test_benchmark_topi_conv2d.py 9.99 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24

"""Testing topi conv2d operator for VTA"""

import os
import json
from collections import namedtuple

import numpy as np
25 26

import tvm
27
from tvm import autotvm
28 29 30 31 32
from tvm.contrib import util
from tvm.contrib.pickle_memoize import memoize
import topi
import topi.testing
import vta
33
from vta import program_fpga, reconfig_runtime
34
import vta.testing
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from vta.testing import simulator

Workload = namedtuple("Conv2DWorkload",
                      ['batch', 'height', 'width', 'in_filter', 'out_filter',
                       'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])

# ResNet18 workloads
resnet_wkls = [
    # Workloads of resnet18 on imagenet
    # ('resnet-18.C1',  Workload(1, 224, 224, 3,   64,  7, 7, 3, 3, 2, 2)),
    ('resnet-18.C2',  Workload(1,  56,  56, 64,  64,  3, 3, 1, 1, 1, 1)),
    # ('resnet-18.C3',  Workload(1,  56,  56, 64,  64,  1, 1, 0, 0, 1, 1)), # this layer does not appear in ResNet
    ('resnet-18.C4',  Workload(1,  56,  56, 64,  128, 3, 3, 1, 1, 2, 2)),
    ('resnet-18.C5',  Workload(1,  56,  56, 64,  128, 1, 1, 0, 0, 2, 2)),
    ('resnet-18.C6',  Workload(1,  28,  28, 128, 128, 3, 3, 1, 1, 1, 1)),
    ('resnet-18.C7',  Workload(1,  28,  28, 128, 256, 3, 3, 1, 1, 2, 2)),
    ('resnet-18.C8',  Workload(1,  28,  28, 128, 256, 1, 1, 0, 0, 2, 2)),
    ('resnet-18.C9',  Workload(1,  14,  14, 256, 256, 3, 3, 1, 1, 1, 1)),
    ('resnet-18.C10', Workload(1,  14,  14, 256, 512, 3, 3, 1, 1, 2, 2)),
    ('resnet-18.C11', Workload(1,  14,  14, 256, 512, 1, 1, 0, 0, 2, 2)),
    ('resnet-18.C12', Workload(1,   7,   7, 512, 512, 3, 3, 1, 1, 1, 1)),
]

# FIXME: we need a custom clip operator to circumvent a pattern detection limitation
59 60 61 62 63 64 65 66 67
@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
    """Unlike topi's current clip, put min and max into two stages."""
    const_min = tvm.const(a_min, x.dtype)
    const_max = tvm.const(a_max, x.dtype)
    x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
    x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
    return x

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def run_conv2d(env, remote, wl, target,
               check_correctness=True, print_ir=False,
               samples=4):

    # Workload assertions
    assert wl.hpad == wl.wpad

    # Perform packing only if we are targeting the accelerator
    if "arm_cpu" in target.keys:
        data_pack = False
        layout = "NCHW"
    elif "vta" in target.keys:
        data_pack = True
        layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)

    # Derive shapes depending upon packing
    a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
    w_shape = (wl.out_filter, wl.in_filter, wl.hkernel, wl.wkernel)
    b_shape = (wl.batch, wl.out_filter, 1, 1)
    if data_pack:
        data_shape = (wl.batch//env.BATCH, wl.in_filter//env.BLOCK_IN,
                  wl.height, wl.width, env.BATCH, env.BLOCK_IN)
90 91
        kernel_shape = (wl.out_filter//env.BLOCK_OUT, wl.in_filter//env.BLOCK_IN,
                        wl.hkernel, wl.wkernel, env.BLOCK_OUT, env.BLOCK_IN)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        bias_shape = (wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
                      1, 1, env.BATCH, env.BLOCK_OUT)
    else:
        data_shape = a_shape
        kernel_shape = w_shape
        bias_shape = b_shape
    data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
    kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
    bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)

    # Define base computation schedule
    with target:
        res = topi.nn.conv2d(
            data, kernel, (wl.hstride, wl.wstride), (wl.hpad, wl.wpad), (1, 1),
            layout, env.acc_dtype)
        res = topi.right_shift(res, 8)
108
        res = topi.add(res, bias)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res = topi.cast(res, env.out_dtype)
        # Derive base schedule
        s = topi.generic.schedule_conv2d_nchw([res])
        if print_ir:
            print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))

    # Derive number of ops
    fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
    fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
    num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * wl.out_filter * wl.in_filter

    # @memoize("vta.tests.test_benchmark_topi.conv2d.verify_nhwc")
    def get_ref_data():
        # derive min max for act, wgt, and bias types (max non inclusive)
        a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1))
        w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1))
        b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2), 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2)
        a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
        w_np = np.random.randint(w_min, w_max, size=w_shape).astype(kernel.dtype)
        b_np = np.random.randint(b_min, b_max, size=b_shape).astype(env.acc_dtype)
        r_np = topi.testing.conv2d_nchw_python(
            a_np.astype(env.acc_dtype), w_np.astype(env.acc_dtype), (wl.hstride, wl.wstride), wl.hpad).astype(env.acc_dtype)
        return a_np, w_np, b_np, r_np

    # Data in original format
    data_np, kernel_np, bias_np, res_ref = get_ref_data()
    if data_pack:
        data_np = data_np.reshape(
            wl.batch//env.BATCH, env.BATCH,
            wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
            wl.height, wl.width).transpose((0, 2, 4, 5, 1, 3))
        kernel_np = kernel_np.reshape(
            wl.out_filter//env.BLOCK_OUT, env.BLOCK_OUT,
            wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
            wl.hkernel, wl.wkernel).transpose((0, 2, 4, 5, 1, 3))
        bias_np = bias_np.reshape(
            wl.batch // env.BATCH, wl.out_filter // env.BLOCK_OUT,
            1, 1, env.BATCH, env.BLOCK_OUT)

    # Build
    if "vta" in target.keys:
        mod = vta.build(s, [data, kernel, bias, res],
                        target=target,
                        target_host=env.target_host,
                        name="conv2d")
    else:
        mod = tvm.build(s, [data, kernel, bias, res],
                        target=target,
                        target_host=env.target_host,
                        name="conv2d")
    temp = util.tempdir()
    mod.save(temp.relpath("conv2d.o"))
    remote.upload(temp.relpath("conv2d.o"))
    f = remote.load_module("conv2d.o")
    ctx = remote.context(str(target))

    res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
    data_arr = tvm.nd.array(data_np, ctx)
    kernel_arr = tvm.nd.array(kernel_np, ctx)
    bias_arr = tvm.nd.array(bias_np, ctx)
    res_arr = tvm.nd.array(res_np, ctx)
    time_f = f.time_evaluator("conv2d", ctx, number=samples)

    # In vta sim mode, collect simulator runtime statistics
    stats = {}
    cost = None
176
    if env.TARGET in ["sim", "tsim"]:
177 178 179 180
        # Check if we're in local RPC mode (allows us to rebuild the
        # runtime on the fly when varying the VTA designs)
        local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
        if local_rpc:
181 182 183 184
            if env.TARGET == "sim":
                remote.get_function("vta.simulator.profiler_clear")()
            else:
                remote.get_function("vta.tsim.profiler_clear")()
185
            cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
186 187 188 189
            if env.TARGET == "sim":
                stats = json.loads(remote.get_function("vta.simulator.profiler_status")())
            else:
                stats = json.loads(remote.get_function("vta.tsim.profiler_status")())
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        else:
            simulator.clear_stats()
            cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
            stats = simulator.stats()
    else:
        cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)

    # Check correctness
    correct = False
    if check_correctness:
        res_orig = res_arr.asnumpy()
        if data_pack:
            res_orig = res_orig.transpose(
                (0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, fout_height, fout_width)
        res_ref = res_ref >> 8
        res_ref += bias_np.reshape(wl.out_filter, 1, 1)
        res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res_ref = res_ref.astype(env.out_dtype)
        correct = np.allclose(res_orig, res_ref)

    gops = (num_ops / cost.mean) / float(10 ** 9)
    status = "PASSED" if correct else "FAILED"
    if "arm_cpu" in target.keys:
        device = "CPU"
    elif "vta" in target.keys:
        device = "VTA"
    print("%s CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops))

    return correct, cost, stats

def test_conv2d(device="vta"):
221
    def _run(env, remote):
222 223
        if device == "vta":
            target = env.target
224
            if env.TARGET not in ["sim", "tsim"]:
225 226 227 228 229 230 231 232 233
                assert tvm.module.enabled("rpc")
                program_fpga(remote, bitstream=None)
                reconfig_runtime(remote)
        elif device == "arm_cpu":
            target = env.target_vta_cpu
        with autotvm.tophub.context(target): # load pre-tuned schedule parameters
            for _, wl in resnet_wkls:
                print(wl)
                run_conv2d(env, remote, wl, target)
234 235 236
    vta.testing.run(_run)

if __name__ == "__main__":
237 238
    test_conv2d(device="arm_cpu")
    test_conv2d(device="vta")