test_schedule_tensorize.py 9.07 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
import tvm

def intrin_vadd(n):
    x = tvm.placeholder((n,), name='vx')
    y = tvm.placeholder((n,), name='vy')
    z = tvm.compute(x.shape, lambda i: x[i] + y[i], name='z')
    def intrin_func(ins, outs):
        xx, yy = ins
        zz = outs[0]
        return tvm.call_packed("vadd", xx, yy, zz)
    with tvm.build_config(offset_factor=16):
        return tvm.decl_tensor_intrin(z.op, intrin_func)

def intrin_gemv(m, n):
    w = tvm.placeholder((m, n), name='w')
    x = tvm.placeholder((n,), name='x')
    k = tvm.reduce_axis((0, n), name='k')
    z = tvm.compute((m,), lambda i:
                    tvm.sum(w[i, k] * x[k], axis=k), name='z')
20 21 22
    Wb = tvm.decl_buffer(w.shape, w.dtype,
                         name="W",
                         offset_factor=16,
23 24 25 26
                         strides=[tvm.var('ldw'), 1])
    def intrin_func(ins, outs):
        ww, xx = ins
        zz = outs[0]
27 28 29
        ww_ptr = ww.access_ptr("r")
        xx_ptr = xx.access_ptr("r")
        zz_ptr = zz.access_ptr("w")
30
        body = tvm.call_packed(
31
            "gemv", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
32
        reset = tvm.call_packed(
33
            "fill_zero", zz_ptr, n)
34
        update = tvm.call_packed(
35
            "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
36 37
        return body, reset, update

38 39
    with tvm.build_config(data_alignment=16,
                          offset_factor=16):
40 41 42
        return tvm.decl_tensor_intrin(z.op, intrin_func,
                                      binds={w: Wb})

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def intrin_gemv_no_reset(m, n):
    w = tvm.placeholder((m, n), name='w')
    x = tvm.placeholder((n,), name='x')
    k = tvm.reduce_axis((0, n), name='k')
    z = tvm.compute((m,), lambda i:
                    tvm.sum(w[i, k] * x[k], axis=k), name='z')
    Wb = tvm.decl_buffer(w.shape, w.dtype,
                         name="W",
                         offset_factor=16,
                         strides=[tvm.var('ldw'), 1])
    def intrin_func(ins, outs):
        ww, xx = ins
        zz = outs[0]
        ww_ptr = ww.access_ptr("r")
        xx_ptr = xx.access_ptr("r")
        zz_ptr = zz.access_ptr("w")
        body = tvm.call_packed(
            "gemv", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
        update = tvm.call_packed(
            "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
        return body, None, update

    with tvm.build_config(data_alignment=16,
                          offset_factor=16):
        return tvm.decl_tensor_intrin(z.op, intrin_func,
                                      binds={w: Wb})

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

def test_tensorize_vadd():
    m = 128
    x = tvm.placeholder((m,), name='x')
    y = tvm.placeholder((m,), name='y')
    z = tvm.compute(x.shape, lambda i: x[i] + y[i], name='z')

    def check(factor):
        s = tvm.create_schedule(z.op)
        xo, xi = s[z].split(z.op.axis[0], factor=factor)
        vadd = intrin_vadd(factor)
        s[z].tensorize(xi, vadd)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[z], dom_map)
        assert tvm.ir_pass.Equal(out_dom[z.op.axis[0]].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[z.op.axis[0]].min, xo * factor)
        assert tvm.ir_pass.Equal(in_dom.items()[0][1][0].extent, factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[z], out_dom, in_dom, vadd)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(vadd.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [x, y, z])

    check(16)


def test_tensorize_matmul():
    n = 1024
    m = n
    l = n
    A = tvm.placeholder((n, l), name='A')
    B = tvm.placeholder((m, l), name='B')
    k = tvm.reduce_axis((0, l), name='k')
    C = tvm.compute((n, m), lambda i, j:
                    tvm.sum(B[j, k] * A[i, k], axis=k), name='C')

    def check(factor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        yo, yi = s[C].split(y, factor=factor)
        gemv = intrin_gemv(factor, l)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def check_rfactor(factor, rfactor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        rk = C.op.reduce_axis[0]
        yo, yi = s[C].split(y, factor=factor)
        ro, ri = s[C].split(rk, factor=rfactor)
        s[C].reorder(yo, ro, yi, ri)
        gemv = intrin_gemv(factor, rfactor)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    def check_rfactor_no_reset(factor, rfactor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        rk = C.op.reduce_axis[0]
        yo, yi = s[C].split(y, factor=factor)
        ro, ri = s[C].split(rk, factor=rfactor)
        s[C].reorder(yo, ro, yi, ri)
        gemv = intrin_gemv_no_reset(factor, rfactor)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

    def check_rfactor_no_reset_multi_reduction(factor, rfactor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        rk = C.op.reduce_axis[0]
        yo, yi = s[C].split(y, factor=factor)
        ro, ri = s[C].split(rk, factor=rfactor)
        roo, roi = s[C].split(ro, factor=2)
        s[C].reorder(yo, roo, roi, yi, ri)
        gemv = intrin_gemv_no_reset(factor, rfactor)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

200 201
    check(16)
    check_rfactor(16, 16)
202 203
    check_rfactor_no_reset(16, 16)
    check_rfactor_no_reset_multi_reduction(16, 16)
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
# This tests whether algorithm and intrinsics expressions are simplified
# as much as possible first and then checked for equality. See Issue #696
def test_tensorize_op():
    def op_intrin():
        bh = 9
        bw = 9
        x = tvm.placeholder((5, 5), name='A')
        y = tvm.compute((bh, bw), lambda i,j: x[j/3 + i%3, j%3+ i/3])

        def intrin_func(ins, outs):
            xx, = ins
            zz = outs[0]
            return tvm.call_packed("op", xx, zz)

        with tvm.build_config(offset_factor=2):
            return tvm.decl_tensor_intrin(y.op, intrin_func)

    A = tvm.placeholder((5, 5), name='A')
    B = tvm.compute((9,9), lambda i, j: A[j/3 + i%3, j%3 + i/3])
    bt = op_intrin()
    s = tvm.create_schedule(B.op)

    x,y = B.op.axis
    s[B].tensorize(x, bt)
    s = s.normalize()
    tvm.lower(s, [A, B])
231 232 233 234

if __name__ == "__main__":
    test_tensorize_vadd()
    test_tensorize_matmul()
235
    test_tensorize_op()