opengl_device_api.cc 20.6 KB
Newer Older
1 2 3 4 5 6
/*!
 *  Copyright (c) 2017 by Contributors
 * \file opengl_device_api.cc
 */
#include <tvm/runtime/registry.h>
#include <cstring>
7 8
#include "./opengl_common.h"
#include "./opengl_module.h"
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

namespace tvm {
namespace runtime {
namespace gl {

/*!
 * \brief Turn OpenGL error enum to string.
 */
static const char* GLGetErrorString(GLenum error) {
  switch (error) {
    case GL_NO_ERROR:
      return "GL_NO_ERROR";
    case GL_INVALID_ENUM:
      return "GL_INVALID_ENUM";
    case GL_INVALID_VALUE:
      return "GL_INVALID_VALUE";
    case GL_INVALID_OPERATION:
      return "GL_INVALID_OPERATION";
27
#if !defined(__APPLE__)
28 29 30 31
    case GL_STACK_OVERFLOW:
      return "GL_STACK_OVERFLOW";
    case GL_STACK_UNDERFLOW:
      return "GL_STACK_UNDERFLOW";
32
#endif
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    case GL_OUT_OF_MEMORY:
      return "GL_OUT_OF_MEMORY";
    default:
      return "Unknown OpenGL error code";
  }
}

/*!
 * \brief Get the latest error.
 */
void OpenGLWorkspace::CheckOpenGLError() {
  GLenum err = gl->GetError();
  CHECK_EQ(err, GL_NO_ERROR) << "OpenGL error, code=" << err << ": "
                             << gl::GLGetErrorString(err);
}

/*!
 * \brief Protected OpenGL call.
 * \param func Expression to call.
 */
#define OPENGL_CALL(func)                                                      \
  {                                                                            \
    (func);                                                                    \
    CheckOpenGLError();                                                        \
  }

/*!
 * \brief The error handling callback passed to GLFW.
 */
void GlfwErrorCallback(int err, const char* str) {
  LOG(FATAL) << "Error: [" << err << "] " << str;
}

const std::shared_ptr<OpenGLWorkspace>& OpenGLWorkspace::Global() {
  static std::shared_ptr<OpenGLWorkspace> inst(new OpenGLWorkspace);
  return inst;
}

void OpenGLWorkspace::SetDevice(TVMContext ctx) {
  CHECK_EQ(ctx.device_type, static_cast<int>(kOpenGL))
    << "Device type must be OpenGL.";
  CHECK_EQ(ctx.device_id, 0) << "Only support 1 OpenGL \"device\".";
}

void OpenGLWorkspace::GetAttr(
    TVMContext ctx, DeviceAttrKind kind, TVMRetValue* rv) {
  switch (kind) {
    case kExist: {
      *rv = static_cast<int>(ctx.device_id == 0);
      break;
    }
    case kMaxThreadsPerBlock: {
      GLint max_texture_size;
      OPENGL_CALL(gl->GetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size));
      break;
    }
    case kWarpSize: {
      *rv = 1;
      break;
    }
93
    case kMaxSharedMemoryPerBlock: return;
94 95 96
    case kComputeVersion: {
      break;
    }
97
    case kDeviceName: return;
98 99
    case kMaxClockRate: return;
    case kMultiProcessorCount: return;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  }
}

void* OpenGLWorkspace::AllocDataSpace(
    TVMContext ctx, size_t nbytes, size_t alignment, TVMType type_hint) {
  return reinterpret_cast<void*>(new Texture(CreateTexture(type_hint, nbytes)));
}

void OpenGLWorkspace::FreeDataSpace(TVMContext ctx, void* ptr) {
  delete reinterpret_cast<Texture*>(ptr);
}

void OpenGLWorkspace::CopyDataFromTo(const void* from,
                                     size_t from_offset,
                                     void* to,
                                     size_t to_offset,
                                     size_t size,
                                     TVMContext ctx_from,
                                     TVMContext ctx_to,
119
                                     TVMType type_hint,
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
                                     TVMStreamHandle stream) {
  CHECK(stream == nullptr);

  // TODO(zhixunt): This is a nasty hack to avoid comparison between
  // incompatible enums. We should add kOpenGL to dlpack.
  constexpr int gl_devtype = kOpenGL;
  std::tuple<int, int> type_from_to(ctx_from.device_type, ctx_to.device_type);

  if (type_from_to == std::make_tuple(gl_devtype, gl_devtype)) {
    auto from_texture = static_cast<const Texture*>(from);
    auto to_texture = static_cast<Texture*>(to);
    auto temp_buffer = std::unique_ptr<char[]>(new char[size]);
    CHECK(from_texture->format_ == to_texture->format_);
    auto elemsz = from_texture->elemsz();
    auto from_begin = static_cast<GLint>(from_offset / elemsz);
    auto to_begin = static_cast<GLint>(to_offset / elemsz);
    auto nelems = static_cast<GLsizei>(size / elemsz);
    GetTextureData(from_texture, from_begin, nelems, temp_buffer.get());
    PutTextureData(to_texture, to_begin, nelems, temp_buffer.get());

  } else if (type_from_to == std::make_tuple(gl_devtype, kDLCPU)) {
    auto texture = static_cast<const Texture*>(from);
    void *data = static_cast<char *>(to) + to_offset;
    auto elemsz = texture->elemsz();
    auto begin = static_cast<GLint>(from_offset / elemsz);
    auto nelems = static_cast<GLsizei>(size / elemsz);
    GetTextureData(texture, begin, nelems, data);

  } else if (type_from_to == std::make_tuple(kDLCPU, gl_devtype)) {
    auto texture = reinterpret_cast<Texture*>(to);
    const void* data = static_cast<const char*>(from) + from_offset;
    auto elemsz = texture->elemsz();
    auto begin = static_cast<GLint>(to_offset / elemsz);
    auto nelems = static_cast<GLsizei>(size / elemsz);
    PutTextureData(texture, begin, nelems, data);

  } else {
    LOG(FATAL) << "Expect copy from/to OpenGL or between OpenGL";
  }
}

void OpenGLWorkspace::StreamSync(TVMContext ctx, TVMStreamHandle stream) {}

OpenGLWorkspace::OpenGLWorkspace() {
  // Set an error handler.
  // This can be called before glfwInit().
  glfwSetErrorCallback(&GlfwErrorCallback);

  // Initialize GLFW.
  if (glfwInit() != GL_TRUE) {
    LOG(FATAL) << "glfwInit() failed!";
  }

  // Create a window.
  glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
  glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
  glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
  glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
  glfwWindowHint(GLFW_VISIBLE, GL_FALSE);
  window_ = glfwCreateWindow(kWindowWidth, kWindowHeight, "", nullptr, nullptr);
  if (window_ == nullptr) {
    LOG(FATAL) << "glfwCreateWindow() failed!";
  }

  // Before using any OpenGL API, we must specify a context.
  glfwMakeContextCurrent(window_);

  // Load all OpenGL API function pointers.
  gl = std::unique_ptr<GLFunctionPointers>(new GLFunctionPointers);

  CheckOpenGLError();

  // We always render the same vertices and triangles.
  GLuint vertex_buffer;
  OPENGL_CALL(gl->GenBuffers(1, &vertex_buffer));
  OPENGL_CALL(gl->BindBuffer(GL_ARRAY_BUFFER, vertex_buffer));
  OPENGL_CALL(gl->BufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices,
                             GL_STATIC_DRAW));

  GLuint vertex_array;
  OPENGL_CALL(gl->GenVertexArrays(1, &vertex_array));
  OPENGL_CALL(gl->BindVertexArray(vertex_array));
  OPENGL_CALL(gl->BindBuffer(GL_ARRAY_BUFFER, vertex_buffer));

  // We always use the same vertex shader.
  vertex_shader_ = CreateShader(GL_VERTEX_SHADER, vertex_shader_text_);

  LOG(INFO) << "OpenGL initialized, version = " << gl->GetString(GL_VERSION);
}

OpenGLWorkspace::~OpenGLWorkspace() {
  // Paired with glfwCreateWindow().
  glfwDestroyWindow(window_);

  // Paired with glfwInit().
  glfwTerminate();
}

void OpenGLWorkspace::BindTextureUnit(GLuint unit, GLuint texture) {
  OPENGL_CALL(gl->ActiveTexture(GL_TEXTURE0 + unit));
  OPENGL_CALL(gl->BindTexture(GL_TEXTURE_2D, texture));
}

void OpenGLWorkspace::OnDeleteTexture(GLuint texture) {
  OPENGL_CALL(gl->DeleteTextures(1, &texture));
}

void OpenGLWorkspace::OnDeleteProgram(GLuint program) {
  OPENGL_CALL(gl->DeleteProgram(program));
}

GLuint OpenGLWorkspace::NumTextureUnits() {
  GLint num_units;
  OPENGL_CALL(gl->GetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &num_units));
  return static_cast<GLuint>(num_units);
}

const OpenGLWorkspace::Vertex OpenGLWorkspace::vertices[OpenGLWorkspace::kNumVertices] = {
    {-1.f, -1.f},
    {1.0f, -1.f},
    {1.0f, 1.0f},
    {-1.f, -1.f},
    {-1.f, 1.0f},
    {1.0f, 1.0f},
};

// Don't need to change this.
// The vertex shader only needs to take in the triangle points.
// No need for point transformations.
const char* OpenGLWorkspace::vertex_shader_text_ = "#version 300 es\n"
    "in vec2 point; // input to vertex shader\n"
    "void main() {\n"
    "  gl_Position = vec4(point, 0.0, 1.0);\n"
    "}\n";

Program OpenGLWorkspace::CreateProgram(
    const char* fragment_shader_src) {
  // Create and compile the shaders.
  GLuint fragment_shader = CreateShader(GL_FRAGMENT_SHADER,
                                        fragment_shader_src);

  // Link the shaders and create the program.
  Program program = CreateProgram(fragment_shader);

  OPENGL_CALL(gl->DeleteShader(fragment_shader));

  return program;
}

GLuint OpenGLWorkspace::CreateShader(GLenum shader_kind,
                                     const char* shader_src) {
  // Create the shader.
  GLuint shader = gl->CreateShader(shader_kind);
  gl->ShaderSource(shader, 1, &shader_src, nullptr);
  gl->CompileShader(shader);

  // Check compile errors.
  GLint err;
  gl->GetShaderiv(shader, GL_COMPILE_STATUS, &err);

  GLint info_log_len;
  gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &info_log_len);

  if (err != GL_TRUE) {
    std::unique_ptr<char[]> err_msg(new char[info_log_len + 1]);
    gl->GetShaderInfoLog(shader, info_log_len, nullptr, err_msg.get());
286
    LOG(FATAL) << err_msg.get() << "\n" << shader_src;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    assert(false);
  }

  CheckOpenGLError();

  return shader;
}

static TextureFormat GetTextureFormat(TVMType type) {
  CHECK_EQ(type.lanes, 1) << "Not supporting multi-lane types.";

  switch (type.code) {
    case kDLInt: {
      switch (type.bits) {
        case 8:
          return {GL_R8I, GL_RED_INTEGER, GL_BYTE};
        case 16:
          return {GL_R16I, GL_RED_INTEGER, GL_SHORT};
        case 32:
          return {GL_R32I, GL_RED_INTEGER, GL_INT};
        default:
          LOG(FATAL) << "Unsupported type bits " << type.bits;
      }
    }
    case kDLUInt: {
      switch (type.bits) {
        case 8:
          return {GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE};
        case 16:
          return {GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT};
        case 32:
          return {GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT};
        default:
          LOG(FATAL) << "Unsupported type bits " << type.bits;
      }
    }
    case kDLFloat: {
      switch (type.bits) {
        case 32:
          return {GL_R32F, GL_RED, GL_FLOAT};
        default:
          LOG(FATAL) << "Unsupported type bits " << type.bits;
      }
    }
331
    default: {
332
      LOG(FATAL) << "Unsupported type code" << type.code;
333
    }
334
  }
335
  return {GL_R32F, GL_RED, GL_FLOAT};
336 337 338 339 340 341 342 343 344 345 346
}

Texture OpenGLWorkspace::CreateTexture(TVMType type, size_t nbytes) {
  // Create a texture.
  GLuint texture;
  OPENGL_CALL(gl->GenTextures(1, &texture));

  BindTextureUnit(NumTextureUnits() - 1, texture);

  // Use glTexImage2D with nullptr data to specify GPU data storage.
  auto texture_format = GetTextureFormat(type);
347 348 349
  auto nelems = static_cast<GLsizei>(nbytes / (type.bits / 8));
  auto height = (nelems + kTextureRowSize - 1) / kTextureRowSize;
  auto width = (height == 1) ? nelems : kTextureRowSize;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  OPENGL_CALL(gl->TexImage2D(GL_TEXTURE_2D, /*level=*/0,
                             texture_format.internal_format,
                             width, height, /*border=*/0,
                             texture_format.format, texture_format.type,
                             /*data=*/nullptr));

  OPENGL_CALL(
      gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
  OPENGL_CALL(
      gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
  OPENGL_CALL(
      gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
  OPENGL_CALL(
      gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST));

  return Texture(this, texture, texture_format, width, height);
}

Program OpenGLWorkspace::CreateProgram(GLuint fragment_shader) {
  // Create the program and link the shaders.
  GLuint program = gl->CreateProgram();
  gl->AttachShader(program, vertex_shader_);
  gl->AttachShader(program, fragment_shader);
  gl->LinkProgram(program);

  // Check link errors.
  GLint err;
  gl->GetProgramiv(program, GL_LINK_STATUS, &err);

  GLint info_log_len;
  gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &info_log_len);

  if (err != GL_TRUE) {
    std::unique_ptr<char[]> err_msg(new char[info_log_len + 1]);
    gl->GetProgramInfoLog(program, info_log_len, nullptr, err_msg.get());
    LOG(FATAL) << err_msg.get();
    assert(false);
  }

  CheckOpenGLError();

  OPENGL_CALL(gl->DetachShader(program, vertex_shader_));
  OPENGL_CALL(gl->DetachShader(program, fragment_shader));

  auto point_attrib = GLuint(gl->GetAttribLocation(program, "point"));
  OPENGL_CALL(gl->EnableVertexAttribArray(point_attrib));

  OPENGL_CALL(gl->VertexAttribPointer(point_attrib, 2, GL_FLOAT, GL_FALSE,
                                      sizeof(Vertex), nullptr));

  return Program(this, program);
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*!
 * \brief Visit a 1D range of an OpenGL texture-backed TVM array.
 * When getting/setting a sub image of a texture, we can only specify a 2D
 * block (xbeg, ybeg, width, height).
 * Since we are storing all TVM arrays using (kTextureRowSize x nrows) 2D
 * textures (row-major), a range in an array does not necessarily map to a 2D
 * block.
 * This function split a 1D range into 3 2D blocks.
 * \param beg The index of the first element in the 1D range.
 * \param end The index of the last + 1 element in the 1D range.
 * \param on_2d_block Callback for each 2D block. Must have interface
 * void(GLint xbeg, GLint ybeg, GLsizei width, GLsizei height).
 */
template <typename F>
static void Visit1DRange(GLint beg, GLint end, F&& on_2d_block) {
  CHECK_LE(beg, end) << "Invalid range.";

  //           xbeg         kTextureRowSize
  // ybeg  ....************
  //       ****************
  //       ****************
  // ylast *********.......
  //           xlast
  GLint xbeg = beg % kTextureRowSize;
  GLint ybeg = beg / kTextureRowSize;
  GLint xlast = (end - 1) % kTextureRowSize;
  GLint ylast = (end - 1) / kTextureRowSize;

  if (ybeg == ylast) {  // Only one row.
    on_2d_block(xbeg, ybeg, end - beg, 1);
    return;
  }

  // First row.
  on_2d_block(xbeg, ybeg, kTextureRowSize - xbeg, 1);

  // Middle block.
  if (ylast - ybeg > 1) {
    on_2d_block(0, ybeg + 1, kTextureRowSize, ylast - ybeg - 1);
  }

  // Last row.
  on_2d_block(0, ylast, xlast + 1, 1);
}

448 449 450 451 452 453 454
void OpenGLWorkspace::PutTextureData(Texture *texture,
                                     GLint begin,
                                     GLsizei nelems,
                                     const GLvoid* data) {
  // Bind to temporary unit.
  BindTextureUnit(NumTextureUnits() - 1, texture->texture());

455 456 457 458 459 460 461 462 463 464 465
  Visit1DRange(begin, begin + nelems, [&](GLint xbeg, GLint ybeg,
                                          GLsizei width, GLsizei height) {
    auto offset = (ybeg * kTextureRowSize + xbeg - begin) * texture->elemsz();
    const GLvoid* ptr = static_cast<const char*>(data) + offset;

    // Similar to cudaMemcpy.
    OPENGL_CALL(gl->TexSubImage2D(GL_TEXTURE_2D, /*level=*/0,
                                  xbeg, ybeg, width, height,
                                  texture->format_.format,
                                  texture->format_.type, ptr));
  });
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

void OpenGLWorkspace::GetTextureData(const Texture *texture,
                                     GLint begin,
                                     GLsizei nelems,
                                     GLvoid* data) {
  BindTextureUnit(NumTextureUnits() - 1, texture->texture());

  // Create frame buffer.
  GLuint frame_buffer;
  OPENGL_CALL(gl->GenFramebuffers(1, &frame_buffer));
  OPENGL_CALL(gl->BindFramebuffer(GL_FRAMEBUFFER, frame_buffer));

  // Bind texture to framebuffer's attachment 0.
  OPENGL_CALL(gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                                       GL_TEXTURE_2D, texture->texture(), 0));

  // Always check that our framebuffer is okay.
  if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
    LOG(FATAL) << "Framebuffer not complete.";
  }

#ifdef __EMSCRIPTEN__
  // WebGL2's glReadPixels API doesn't allow GL_RED user buffer format.
  // Instead, We must use GL_RGBA. This means the data we retrieve has useless
  // GBA channels. Here we are applying a dirty hack.
  // TODO(zhixunt): We really want to utilize all RGBA channels in textures.
  //
  // WebGL2's glReadPixels API also doesn't allow GL_RED_INTEGER or
  // GL_RGB_INTEGER user buffer format, which means we cannot retrieve integer
  // texture data? (need to confirm)

  CHECK_EQ(texture->format_.internal_format, GL_R32F)
      << "Retrieving integer texture not supported yet.";
  auto elemsz = texture->format_.elemsz();
  auto nchannels = 4;
  auto padded_data_size = nchannels * nelems * elemsz;
  auto padded_data = std::unique_ptr<char[]>(new char[padded_data_size]);
504 505 506 507 508 509 510 511
  Visit1DRange(begin, begin + nelems, [&](GLint xbeg, GLint ybeg,
                                          GLsizei width, GLsizei height) {
    auto data_offset = (ybeg * kTextureRowSize + xbeg - begin) * elemsz;
    auto padded_data_offset = data_offset * nchannels;
    OPENGL_CALL(gl->ReadPixels(xbeg, ybeg, width, height,
                               GL_RGBA, GL_FLOAT,
                               padded_data.get() + padded_data_offset));
  });
512 513 514 515 516 517
  for (GLsizei i = 0; i != nelems; ++i) {
    auto dst = reinterpret_cast<char *>(data) + i * elemsz;
    auto src = padded_data.get() + nchannels * i * elemsz;
    std::memcpy(dst, src, elemsz);
  }
#else
518 519 520 521 522 523 524 525 526
  Visit1DRange(begin, begin + nelems, [&](GLint xbeg, GLint ybeg,
                                          GLsizei width, GLsizei height) {
    auto offset = (ybeg * kTextureRowSize + xbeg - begin) * texture->elemsz();
    GLvoid* ptr = static_cast<char*>(data) + offset;

    OPENGL_CALL(gl->ReadPixels(xbeg, ybeg, width, height,
                               texture->format_.format, texture->format_.type,
                               ptr));
  });
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
#endif

  OPENGL_CALL(gl->DeleteFramebuffers(1, &frame_buffer));
}

void OpenGLWorkspace::SetCurrentProgram(const Program& program) {
  OPENGL_CALL(gl->UseProgram(program.program()));
}

void OpenGLWorkspace::SetUniform(const Program& program,
                                 const std::string& name,
                                 TVMType type,
                                 void* value) {
  GLint location = gl->GetUniformLocation(program.program(), name.c_str());
  switch (type.code) {
    case kDLInt: {
      CHECK_EQ(type.bits, 32) << "Only support 32-bit int for uniform.";
      GLint uniform_value = *reinterpret_cast<GLint*>(value);
      OPENGL_CALL(gl->Uniform1i(location, uniform_value));
      break;
    }
    case kDLUInt: {
      LOG(FATAL) << "Strangely, emcc WebGL does not support glUniform1ui.";
      break;
    }
    case kDLFloat: {
      CHECK_EQ(type.bits, 32) << "Only support 32-bit float for uniform.";
      GLfloat uniform_value = *reinterpret_cast<GLfloat*>(value);
      OPENGL_CALL(gl->Uniform1f(location, uniform_value));
      break;
    }
    default: {
      LOG(FATAL) << "Unsupported type code for uniform.";
      break;
    }
  }
}

void OpenGLWorkspace::SetInputTexture(const Program& program,
                                      const std::string& name,
                                      GLuint unit,
                                      Texture* texture) {
  // We always use the last texture unit as temporary.
  // Therefore, we can have "NumTextureUnits() - 1" input textures.
  CHECK_LT(unit, NumTextureUnits() - 1) << "Too many textures.";

  BindTextureUnit(unit, texture->texture());
  GLint location = gl->GetUniformLocation(program.program_, name.c_str());
  OPENGL_CALL(gl->Uniform1i(location, unit));
}

void OpenGLWorkspace::Render(Texture* output) {
  // Create frame buffer.
  GLuint frame_buffer;
  OPENGL_CALL(gl->GenFramebuffers(1, &frame_buffer));
  OPENGL_CALL(gl->BindFramebuffer(GL_FRAMEBUFFER, frame_buffer));

  // Set "renderedTexture" as our colour attachement 0.
  OPENGL_CALL(gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                                       GL_TEXTURE_2D, output->texture(), 0));

  // Specify that we will render to color attachment 0.
  GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0};
  OPENGL_CALL(gl->DrawBuffers(1, DrawBuffers));

  // Always check that our framebuffer is okay.
  if (gl->CheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
    LOG(FATAL) << "Framebuffer not complete.";
  }

  // Perform rendering.
  OPENGL_CALL(gl->Viewport(0, 0, output->width(), output->height()));
  OPENGL_CALL(gl->Clear(GL_COLOR_BUFFER_BIT));
  OPENGL_CALL(gl->DrawArrays(GL_TRIANGLES, 0, 6));

  OPENGL_CALL(gl->DeleteFramebuffers(1, &frame_buffer));
}

TVM_REGISTER_GLOBAL("device_api.opengl")
.set_body([](TVMArgs args, TVMRetValue* rv) {
  DeviceAPI* ptr = OpenGLWorkspace::Global().get();
  *rv = static_cast<void*>(ptr);
});

}  // namespace gl
}  // namespace runtime
}  // namespace tvm