transform.h 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file tvm/ir/transform.h
 *
 * This file implements a pass manager. The pass manager manages a sequence
 * of IRModule -> IRModule transformation passes over a particlar unit of AST. The
 * design is largely inspired from LLVM's pass manager and modern deep learning
 * frameworks that perform tensor->tensor transformations.
 *
 * The responsibilities of a traditional compiler pass manager usually involves:
 *  - Organizing the execution order of optimization passes though not
 * necessarily in the optimal sequence.
 *  - Collecting required analysis information and keep them up-to-date.
 *  - Reducing the effort required to implement new passes for compiler
 * developers, etc.
 *
 * Similar to LLVM's pass manager, we designed the Relay pass manager to work
 * different granularity, i.e. module level, function level, and even sequential
 * passe that contains a host of passes.
 *
 * However, we also extend the functionality of the traditional pass manager
 * with the consideration of requirements/convention from deep learning
 * frameworks, such as Pytorch and Gluon, etc. Each pass in the Relay pass
 * manager performs the IRModule -> IRModule transformation. All
 * different types of passes, including the sequential-level pass object, are
 * essentially pass objects. This design, therefore, effectively provides users
 * a consistent and convenient interface, i.e. Pass, to play with. It offers a
 * means to ease the development and testing of Relay passes. For example, with
 * the pass manager, external users will be able to have custom passes correctly
 * scheduled without having to modify a single handcrafted pass order.
 *
 * In the future we need to describe constraints between passes. For example,
 * we may want to preserve dependencies between different passes and validate
 * them on the completion of a certain pass.
 *
 * We also need to store side information and import the error reporting system.
 */
#ifndef TVM_IR_TRANSFORM_H_
#define TVM_IR_TRANSFORM_H_

59
#include <tvm/support/with.h>
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include <tvm/node/container.h>
#include <tvm/ir/error.h>
#include <tvm/ir/module.h>
#include <string>

namespace tvm {
namespace transform {

/*!
 * \brief PassContextNode contains the information that a pass can rely on,
 * such as analysis results.
 * \sa PassContext
 */
class PassContextNode : public Object {
 public:
  /*!
   * \brief The error reporter used to notify users why an optimization fails.
   */
  ErrorReporter err_reporter;

  /*! \brief The default optimization level. */
  int opt_level{2};

  /*! \brief CPU is the default fallback device for heterogeneous execution. */
  int fallback_device{static_cast<int>(kDLCPU)};

  /*! \brief The list of required passes. */
87
  Array<PrimExpr> required_pass;
88
  /*! \brief The list of disabled passes. */
89
  Array<PrimExpr> disabled_pass;
90 91 92

  PassContextNode() = default;

93
  void VisitAttrs(AttrVisitor* v) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    v->Visit("opt_level", &opt_level);
    v->Visit("fallback_device", &fallback_device);
    v->Visit("required_pass", &required_pass);
    v->Visit("disabled_pass", &disabled_pass);
  }

  static constexpr const char* _type_key = "relay.PassContext";
  TVM_DECLARE_FINAL_OBJECT_INFO(PassContextNode, Object);
};

/*!
 * \brief PassContext that is used to configure the pass behavior.
 *
 * \code
 *
 *  auto new_ctx = PassContext::Create();
 *  ctx->opt_level = 2;
 *  ctx->fallback_device = kDLCPU;
 *  With<PassContext> scope(ctx);
 *  // pass context in effect.
 *
 * \endcode
 * \sa PassContextNode
 */
class PassContext : public ObjectRef {
 public:
  PassContext() {}
121
  explicit PassContext(ObjectPtr<Object> n) : ObjectRef(n) {}
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  /*!
   * \brief const accessor.
   * \return const access pointer.
   */
  const PassContextNode* operator->() const {
    CHECK(get() != nullptr);
    return static_cast<const PassContextNode*>(get());
  }
  /*!
   * \brief mutable accessor.
   * \return mutable access pointer.
   */
  PassContextNode* operator->() {
    CHECK(get() != nullptr);
    return static_cast<PassContextNode*>(get_mutable());
  }
  /*!
   * \brief Construct a PassContext containing the default configurations.
   * \return The new PassContext.
   */
  TVM_DLL static PassContext Create();
  /*!
   * \brief Get the default pass context in the current scope.
   * \return The pass context.
   */
  TVM_DLL static PassContext Current();

  // accessor.
  using ContainerType = PassContextNode;
  class Internal;

 private:
  // The entry of a pass context scope.
  TVM_DLL void EnterWithScope();
  // The exit of a pass context scope.
  TVM_DLL void ExitWithScope();

  // Classes to get the Python `with` like syntax.
  friend class Internal;
161
  friend class With<PassContext>;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
};

/*!
 * \brief Meta data that will be used to help optimization and analysis.
 * \sa PassInfo
 */
class PassInfoNode : public Object {
 public:
  /*! \brief The minimal optimization level that this pass will be enabled. */
  int opt_level;

  /*! \brief The name of an optimization/analysis pass. */
  std::string name;

  /*! \brief The passes that are required to perform the current pass. */
177
  Array<PrimExpr> required;
178 179 180

  PassInfoNode() = default;

181
  void VisitAttrs(AttrVisitor* v) {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    v->Visit("opt_level", &opt_level);
    v->Visit("name", &name);
    v->Visit("required", &required);
  }

  static constexpr const char* _type_key = "relay.PassInfo";
  TVM_DECLARE_FINAL_OBJECT_INFO(PassInfoNode, Object);
};

/*
 * \brief Managed reference class for PassInfoNode
 * \sa PassInfoNode
 */
class PassInfo : public ObjectRef {
 public:
  /*!
   * \brief Constructor
   * \param opt_level The optimization level
   * \param name Name of the pass.
   * \param required  The passes that are required to perform the current pass.
   */
  TVM_DLL PassInfo(int opt_level,
                   std::string name,
205
                   Array<PrimExpr> required);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

  TVM_DEFINE_OBJECT_REF_METHODS(PassInfo, ObjectRef, PassInfoNode);
};

/*!
 * \brief PassNode is the base type of differnt types of optimization passes.
 * It is designed as a pure class and implemented by different pass subclasses
 * at different granularity of Relay nodes.
 */
class PassNode : public Object {
 public:
  virtual ~PassNode() {}
  /*!
   * \brief Get the pass information/meta data. */
  virtual PassInfo Info() const = 0;

  /*!
   * \brief Transform mod using the default PassContext in the current scope.
   *
   * \param mod The module that an optimization pass runs on.
   *
   * \return The transformed module.
   */
  IRModule operator()(const IRModule& mod) const {
    return this->operator()(mod, PassContext::Current());
  }

  /*!
   * \brief Transform mod using a functor under a given pass context.
   *
   * \param mod The module that an optimization pass runs on.
   * \param pass_ctx The pass context that can provide information for the optimization.
   *
   * \return The transformed module.
   */
  virtual IRModule operator()(const IRModule& mod,
                              const PassContext& pass_ctx) const = 0;

244
  void VisitAttrs(AttrVisitor* v) {}
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

  static constexpr const char* _type_key = "relay.Pass";
  TVM_DECLARE_BASE_OBJECT_INFO(PassNode, Object);
};

class Pass : public ObjectRef {
 public:
  /*!
   * \brief Transform mod using the default PassContext in the current scope.
   *
   * \param mod The module that an optimization pass runs on.
   *
   * \return The transformed module.
   */
  IRModule operator()(const IRModule& mod) const {
    const PassNode* node = operator->();
    CHECK(node != nullptr);
    return node->operator()(mod);
  }
  /*!
   * \brief Transform mod using a functor under a given pass context.
   *
   * \param mod The module that an optimization pass runs on.
   * \param pass_ctx The pass context that can provide information for the optimization.
   *
   * \return The transformed module.
   */
  IRModule operator()(const IRModule& mod,
                      const PassContext& pass_ctx) const {
    const PassNode* node = operator->();
    CHECK(node != nullptr);
    return node->operator()(mod, pass_ctx);
  }

  TVM_DEFINE_OBJECT_REF_METHODS(Pass, ObjectRef, PassNode);
};

class SequentialNode;

class Sequential : public Pass {
 public:
  /*!
   * \brief The constructor of `Sequential`.
   *
   * \param passes The passes to apply.
   * \param pass_info The pass metadata.
   */
292
  TVM_DLL Sequential(Array<Pass> passes, PassInfo pass_info);
293 294 295 296 297 298 299 300 301

  /*!
   * \brief The constructor of `Sequential`.
   *
   * \param passes The passes to apply.
   * \param name The name of a sequential pass. It's defaulted to "sequential".
   *        This allows users to only provide a list of passes and execute them
   *        under a given context.
   */
302
  TVM_DLL Sequential(Array<Pass> passes, std::string name = "sequential");
303 304

  Sequential() = default;
305
  explicit Sequential(ObjectPtr<Object> n) : Pass(n) {}
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

  const SequentialNode* operator->() const;
  using ContainerType = Sequential;
};

/*
 * \brief Create a module pass.
 *
 * \param pass_func The packed function that contains the optimization.
 * \param opt_level The optimization level of the module pass.
 * \param name The name of the module pass.
 * \param required The list of the passes that the module pass is dependent on.
 *
 * \return The created module pass.
 */
Pass CreateModulePass(
    const runtime::TypedPackedFunc<IRModule(IRModule, PassContext)>& pass_func,
    int opt_level,
    const std::string& name,
325
    const Array<PrimExpr>& required);
326 327 328 329 330

}  // namespace transform
}  // namespace tvm

#endif  // TVM_IR_TRANSFORM_H_