mul.cc 3.63 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 *  Copyright (c) 2019 by Contributors
 * \file src/relay/qnn/op/mul.cc
 * \brief QNN mul operator.
 */
#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../pass/pattern_util.h"
#include "../util.h"
#include "op_common.h"

namespace tvm {
namespace relay {
namespace qnn {

/*
 * \brief Canonicalizes the QNN mul op.
 * \param attrs The QNN concatenate attrs.
 * \param new_args The new mutated args to the call node.
 * \param arg_types The types of input and output.
 * \return The sequence of Relay ops for mul op.
 */
Expr QnnMulCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
                        const Array<tvm::relay::Type>& arg_types) {
  // Get the attrs.
  CHECK_EQ(new_args.size(), 2);
  auto& lhs = new_args[0];
  auto& rhs = new_args[1];
  const auto* binary_op_attrs = attrs.as<QnnBinaryOpAttrs>();
  CHECK(binary_op_attrs != nullptr);
  auto lhs_scale = binary_op_attrs->lhs_scale;
  auto lhs_zero_point = binary_op_attrs->lhs_zero_point;
  auto rhs_scale = binary_op_attrs->rhs_scale;
  auto rhs_zero_point = binary_op_attrs->rhs_zero_point;
  auto output_scale = binary_op_attrs->output_scale;
  auto output_zero_point = binary_op_attrs->output_zero_point;

  // Get the input dtype and shape.
  CHECK_EQ(arg_types.size(), 3);
  auto tensor_type = arg_types[0].as<TensorTypeNode>();
  auto input_dtype = tensor_type->dtype;
  auto input_shape = tensor_type->shape;

  /*
  A tensor multiplication c = a * b can be written in terms of respective
  quantized tensors, scales and zero points as
  S_c * (Q_c - zp_c) = S_a * (Q_a - zp_a) * S_b * (Q_b - zp_b).

  We can consider the product (Q_a - zp_a) * (Q_b - zp_b) as a different
  quantized tensor of c, Q', with corresponding scale S' = S_a * S_b and zp' =
  0. The quantized multiplication then becomes
  Q_c = S'/S_c Q' + z_c,
  which is essentially a requantization of tensor Q' into tensor Q_c.
  */

  auto lhs_shifted = Cast(lhs, Int(32));
  auto rhs_shifted = Cast(rhs, Int(32));

  if (lhs_zero_point != 0) {
    auto lhs_zp = MakeConstantScalar(Int(32), lhs_zero_point);
    lhs_shifted = Subtract(lhs_shifted, lhs_zp);
  }

  if (rhs_zero_point != 0) {
    auto rhs_zp = MakeConstantScalar(Int(32), rhs_zero_point);
    rhs_shifted = Subtract(rhs_shifted, rhs_zp);
  }

  // Create a new tensor Q'
  auto output = Multiply(lhs_shifted, rhs_shifted);

  auto scale_new = rhs_scale * lhs_scale;

  // Requantize to get Q_c
  output = Requantize(output, input_shape, scale_new, 0, output_scale,
    output_zero_point, input_dtype);

  return output;
}

// QNN Multiplication operator.
QNN_REGISTER_BINARY_OP("mul")
.describe("Elementwise mul with with broadcasting for quantized tensors.")
.set_support_level(11)
.set_attr<FTVMLegalize>("FTVMQnnCanonicalize", QnnMulCanonicalize);

}  // namespace qnn
}  // namespace relay
}  // namespace tvm