test_graph_tuner_core.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# NOTE: We name this test file to start with test_graph_tuner
# to make it execute after zero_rank tensor test cases. This
# helps avoid topi arithmetic operator overloading issue:
# https://github.com/dmlc/tvm/issues/3240.
# TODO: restore the file name after this issue is resolved.
import os
import copy
import numpy as np
import tvm
import tvm.relay.testing

from tvm import autotvm
from tvm import relay
from tvm.autotvm.task import ConfigEntity
from tvm.autotvm.measure import MeasureResult, MeasureInput
from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner
from test_graph_tuner_utils import create_workload


def _create_data(target, dshape, dtype, layout):
    data = relay.var("data", shape=dshape, dtype=dtype)
    w0 = relay.var("w0_weight")
    conv0 = relay.nn.conv2d(data, w0, channels=16, kernel_size=(3, 3), padding=(1, 1))
    w1 = relay.var("w1_weight")
    conv1 = relay.nn.conv2d(conv0, w1, channels=32, kernel_size=(1, 1))
    w2 = relay.var("w2_weight")
    conv2 = relay.nn.conv2d(conv1, w2, channels=32, kernel_size=(3, 3), padding=(1, 1))
    out = relay.add(conv1, conv2)
    net = relay.Function(relay.ir_pass.free_vars(out), out)
    net, params = relay.testing.create_workload(net)
    tasks = autotvm.task.extract_from_program(net,
                                              target=target,
                                              params=params,
                                              ops=(relay.op.nn.conv2d,))
    wkl_list = [
        create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype),
        create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0), (1, 1), layout, layout, dtype, dtype),
        create_workload((1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype),
    ]
    costs = [0.04, 0.012, 0.03]
    config_list = []
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [3, 1]],
                      ["tile_oc", "sp", [4, 4]],
                      ["tile_ow", "sp", [4, 2]],
                      ["unroll_kw", "ot", True]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [2, 8]],
                      ["tile_oc", "sp", [1, 32]],
                      ["tile_oh", "ot", 1],
                      ["tile_ow", "sp", [4, 2]]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [8, 4]],
                      ["tile_oc", "sp", [4, 8]],
                      ["tile_ow", "sp", [2, 4]],
                      ["unroll_kw", "ot", False]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))

    records = []
    for wkl, cost, config, task in zip(wkl_list, costs, config_list, tasks):
        task.workload = wkl
        ms_input = MeasureInput(target=target, task=task, config=config)
        ms_output = MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1)
        records.append((ms_input, ms_output))

    ltf_records = []
    ltf_arg = [tvm.placeholder((1, 64, 16, 16, 8), dtype=dtype), "NCHW8c", "NCHW512c"]
    ltf_arg = autotvm.task.topi_integration.serialize_args(ltf_arg)
    ltf_wkl = ('layout_transform',) + autotvm.task.args_to_workload(ltf_arg)
    ltf_task = copy.deepcopy(tasks[0])
    ltf_task.workload = ltf_wkl
    ms_input = MeasureInput(target=target, task=ltf_task, config=None)
    ms_output =  MeasureResult(costs=(1.91224744e-05,), error_no=0, all_cost=-1, timestamp=-1)
    ltf_records.append((ms_input, ms_output))

    ltf_keys = []
    ltf_arg = [tvm.placeholder((1, 4, 8, 8, 4), dtype=dtype), "NCHW4c", "NCHW8c"]
    ltf_arg = autotvm.task.topi_integration.serialize_args(ltf_arg)
    ltf_wkl = ('layout_transform',) + autotvm.task.args_to_workload(ltf_arg)
    ltf_keys.append(ltf_wkl)
    ltf_arg = [tvm.placeholder((1, 1, 8, 8, 32), dtype=dtype), "NCHW32c", "NCHW4c"]
    ltf_arg = autotvm.task.topi_integration.serialize_args(ltf_arg)
    ltf_wkl = ('layout_transform',) + autotvm.task.args_to_workload(ltf_arg)
    ltf_keys.append(ltf_wkl)
    ltf_arg = [tvm.placeholder((1, 4, 8, 8, 8), dtype=dtype), "NCHW8c", "NCHW32c"]
    ltf_arg = autotvm.task.topi_integration.serialize_args(ltf_arg)
    ltf_wkl = ('layout_transform',) + autotvm.task.args_to_workload(ltf_arg)
    ltf_keys.append(ltf_wkl)

    return net, records, ltf_records, ltf_keys, tasks


def test_graph_tuner_layout_transform():
    log_file = "%s/test_tuner.log" % (os.getcwd())
    target = "llvm"
    dshape = (1, 3, 8, 8)
    dtype = "float32"
    layout = "NCHW"
    target_ops = [relay.nn.conv2d]

    g, records, ltf_records, ltf_keys, _ = _create_data(target, dshape, dtype, layout)
    executor = DPTuner(g, {"data": dshape}, records, target_ops, target=target, log_file=log_file)
    executor.benchmark_layout_transform(layout_records=ltf_records, infer_layout=True)
    out = executor._layout_transform_perf_records

    num_flops = 0
    total_time = 0
    for record in ltf_records:
        ltf_wkl = record[0].task.workload
        input_shape = ltf_wkl[1][1]
        flops = np.prod(input_shape)
        num_flops += flops
        total_time += record[1].costs[0]
    avg_time = total_time / num_flops

    for ltf_workload in out:
        input_shape = ltf_workload[1][1]
        flops = 1
        for i in input_shape:
            flops *= i
        expected_time = flops * avg_time
        out_time = out[ltf_workload][1].costs[0]
        assert expected_time == out_time, "Inferred layout transformation time mismatch for %s: " \
                                          "expecting %f but got %f" % (str(ltf_workload), expected_time,
                                                                       out_time)


def test_DPTuner_run():
    log_file = "%s/test_tuner.log" % (os.getcwd())
    target = "llvm"
    dtype = "float32"
    layout = "NCHW"
    dshape = (1, 3, 8, 8)
    target_ops = [relay.nn.conv2d]

    g, records, ltf_records, ltf_keys, tasks = _create_data(target, dshape, dtype, layout)
162 163
    mod = relay.module.Module()
    mod[mod.entry_func] = g
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    costs = [0.02, 0.02, 0.045]
    config_list = []
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [1, 3]],
                      ["tile_oc", "sp", [2, 8]],
                      ["tile_ow", "sp", [4, 2]],
                      ["unroll_kw", "ot", True]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [4, 4]],
                      ["tile_oc", "sp", [2, 16]],
                      ["tile_oh", "ot", 1],
                      ["tile_ow", "sp", [4, 2]]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [16, 2]],
                      ["tile_oc", "sp", [8, 4]],
                      ["tile_ow", "sp", [2, 4]],
                      ["unroll_kw", "ot", False]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    for cost, config, task in zip(costs, config_list, tasks):
        ms_input = MeasureInput(target=target, task=task, config=config)
        ms_output = MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1)
        records.append((ms_input, ms_output))

195
    executor = DPTuner(mod, {"data": dshape}, records, target_ops, target, log_file=log_file)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    executor.benchmark_layout_transform(layout_records=ltf_records, infer_layout=True)
    executor.run()
    out = [record[0].config for record in executor.get_optimal_records()]
    expected_out = [records[3][0].config, records[1][0].config, records[2][0].config]
    assert expected_out == out, "Output mismatch: expecting %s but got %s" \
                                % (str(expected_out), str(out))
    assert os.path.isfile(log_file), "No log file with name %s exists." % log_file


def test_PBQPTuner_run():
    target = "llvm"
    dtype = "float32"
    layout = "NCHW"
    dshape = (1, 3, 8, 8)
    target_ops = [relay.nn.conv2d]

    g, records, ltf_records, ltf_keys, tasks = _create_data(target, dshape, dtype, layout)
    costs = [0.02, 0.02, 0.045]
    config_list = []
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [1, 3]],
                      ["tile_oc", "sp", [2, 8]],
                      ["tile_ow", "sp", [4, 2]],
                      ["unroll_kw", "ot", True]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [4, 4]],
                      ["tile_oc", "sp", [2, 16]],
                      ["tile_oh", "ot", 1],
                      ["tile_ow", "sp", [4, 2]]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    cfg_dict = {"i": -1,
                "c": None,
                "e": [["tile_ic", "sp", [16, 2]],
                      ["tile_oc", "sp", [8, 4]],
                      ["tile_ow", "sp", [2, 4]],
                      ["unroll_kw", "ot", False]],
                "t": ""}
    config_list.append(ConfigEntity.from_json_dict(cfg_dict))
    for cost, config, task in zip(costs, config_list, tasks):
        ms_input = MeasureInput(target=target, task=task, config=config)
        ms_output = MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1)
        records.append((ms_input, ms_output))

    executor = PBQPTuner(g, {"data": dshape}, records, target_ops, target)
    executor.benchmark_layout_transform(layout_records=ltf_records, infer_layout=True)
    executor.run()
    out = [record[0].config for record in executor.get_optimal_records()]
    expected_out = [records[3][0].config, records[1][0].config, records[2][0].config]
    assert expected_out == out, "Output mismatch: expecting %s but got %s" \
                           % (str(expected_out), str(out))


if __name__=="__main__":
    test_graph_tuner_layout_transform()
    test_DPTuner_run()
    test_PBQPTuner_run()