test_ir_builder.py 5.33 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17
import tvm
18
import numpy as np
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

def test_for():
    ib = tvm.ir_builder.create()
    n = tvm.var("n")
    A = ib.allocate("float32", n, name="A", scope="global")
    with ib.for_range(0, n, name="i") as i:
        A[i] = A[i] + 1
        with ib.for_range(0, 10, name="j") as j:
            A[j] = A[j] + 2

    body = ib.get()
    print(body)
    assert isinstance(body, tvm.stmt.AttrStmt)
    body = body.body
    assert isinstance(body, tvm.stmt.Allocate)
    body = body.body
    assert isinstance(body, tvm.stmt.For)
    body = body.body
    assert isinstance(body, tvm.stmt.Block)
    assert isinstance(body.rest, tvm.stmt.For)

def test_if():
    ib = tvm.ir_builder.create()
    n = tvm.var("n")
    A = ib.pointer("float32", name="A")
44
    tmod = tvm.truncmod
45
    with ib.for_range(0, n, name="i") as i:
46
        with ib.if_scope(tmod(i, 2) == 0):
47 48 49 50 51
            A[i] = A[i] + 1
        with ib.else_scope():
            A[0] = A[i] + 2

    body = ib.get()
52
    assert A == A
53 54 55
    assert isinstance(body, tvm.stmt.For)
    body = body.body
    assert isinstance(body, tvm.stmt.IfThenElse)
56
    assert isinstance(body.condition, tvm.expr.EQ)
57 58 59
    assert isinstance(body.then_case.index, tvm.expr.Var)
    assert body.else_case.index.value == 0

60 61 62 63
def test_prefetch():
    A = tvm.placeholder((10, 20), name="A")
    ib = tvm.ir_builder.create()
    n = tvm.var("n")
64

65 66 67 68 69 70 71 72 73
    with ib.for_range(0, n, name="i") as i:
        ib.emit(
            tvm.make.Prefetch(
                A.op, A.value_index, A.dtype,
                [tvm.make.range_by_min_extent(i+1, 2),
                 tvm.make.range_by_min_extent(0, 20)]))
    body = ib.get()
    assert body.body.bounds[0].extent.value == 2

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def test_cpu():
    n = 1024
    dtype = "float32"
    A = tvm.placeholder((n,), name='A')
    B = tvm.placeholder((n,), name='B')
    def test_device_ir(A, B, C):
        n = A.shape[0]
        max_threads = 8
        ib = tvm.ir_builder.create()
        Aptr = ib.buffer_ptr(A)
        Bptr = ib.buffer_ptr(B)
        Cptr = ib.buffer_ptr(C)
        with ib.for_range(0, n, name="i") as i:
            Cptr[i] = Aptr[i] + Bptr[i]
        body = ib.get()
        return body
    C = tvm.extern(A.shape, [A, B], lambda ins, outs: test_device_ir(ins[0], ins[1], outs[0]),
                   name="vector_add", dtype=dtype)
    s = tvm.create_schedule(C.op)
    def check_target(target):
        if not tvm.module.enabled(target):
            return
        # build and invoke the kernel.
        fadd = tvm.build(s, [A, B, C], target)
        ctx = tvm.context(target, 0)
        # launch the kernel.
        a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
        b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), ctx)
        c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
        fadd(a, b, c)
104
        tvm.testing.assert_allclose(c.asnumpy(), a.asnumpy() + b.asnumpy())
105 106 107 108 109 110 111
    check_target("llvm")

def test_gpu():
    n = tvm.var('n')
    dtype = "float32"
    A = tvm.placeholder((n,), name='A')
    B = tvm.placeholder((n,), name='B')
112 113
    idxd = tvm.indexdiv

114 115 116 117 118 119
    def test_device_ir(A, B, C):
        n = A.shape[0]
        max_threads = 32
        ib = tvm.ir_builder.create()
        bx = tvm.thread_axis("blockIdx.x")
        tx = tvm.thread_axis("threadIdx.x")
120
        ib.scope_attr(bx, "thread_extent", idxd(n+max_threads-1, max_threads))
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        ib.scope_attr(tx, "thread_extent", max_threads)
        idx = bx.var * max_threads + tx.var
        Aptr = ib.buffer_ptr(A)
        Bptr = ib.buffer_ptr(B)
        Cptr = ib.buffer_ptr(C)
        with ib.if_scope(ib.likely(idx<n)):
            Cptr[idx] = Aptr[idx] + Bptr[idx]
        body = ib.get()
        return body
    C = tvm.extern(A.shape, [A, B], lambda ins, outs: test_device_ir(ins[0], ins[1], outs[0]),
                   name="vector_add", dtype=dtype)
    s = tvm.create_schedule(C.op)
    bounds = tvm.schedule.InferBound(s)
    stmt = tvm.schedule.ScheduleOps(s, bounds)
    def check_target(target):
        n = 1024
        if not tvm.module.enabled(target):
            return
        # build and invoke the kernel.
        fadd = tvm.build(s, [A, B, C], target)
        ctx = tvm.context(target, 0)
        # launch the kernel.
        a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
        b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), ctx)
        c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
        fadd(a, b, c)
147
        tvm.testing.assert_allclose(c.asnumpy(), a.asnumpy() + b.asnumpy())
148 149
    check_target("opencl")
    check_target("cuda")
150

151
if __name__ == "__main__":
152
    test_prefetch()
153 154
    test_if()
    test_for()
155 156
    test_cpu()
    test_gpu()