test_runtime_graph.py 4.47 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19
import tvm
import numpy as np
import json
20 21
from tvm import rpc
from tvm.contrib import util, graph_runtime
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

def test_graph_simple():
    n = 4
    A = tvm.placeholder((n,), name='A')
    B = tvm.compute(A.shape, lambda *i: A(*i) + 1.0, name='B')
    s = tvm.create_schedule(B.op)

    node0 = {"op": "null", "name": "x", "inputs": []}
    node1 = {"op": "tvm_op", "name": "add",
             "inputs": [[0, 0, 0]],
             "attrs": {"func_name": "myadd",
                       "flatten_data": "1",
                       "num_inputs" : "1",
                    "num_outputs" : "1"}}
    nodes = [node0, node1]
    arg_nodes = [0]
    node_row_ptr = [0, 1, 2]
    outputs = [[1, 0, 0]]
    shape = (4,)
    attrs = {
        "shape" : ["list_shape", [shape, shape]],
        "dltype" : ["list_str", ["float32", "float32"]],
        "storage_id" : ["list_int", [0, 1]],
    }
    graph = {"nodes": nodes,
             "arg_nodes": arg_nodes,
             "node_row_ptr": node_row_ptr,
             "heads": outputs,
             "attrs": attrs}
    graph = json.dumps(graph)

    def check_verify():
        if not tvm.module.enabled("llvm"):
            print("Skip because llvm is not enabled")
            return
        mlib = tvm.build(s, [A, B], "llvm", name="myadd")
        mod = graph_runtime.create(graph, mlib, tvm.cpu(0))
        a = np.random.uniform(size=(n,)).astype(A.dtype)
        mod.run(x=a)
        out = mod.get_output(0, tvm.nd.empty((n,)))
        np.testing.assert_equal(out.asnumpy(), a + 1)

    def check_remote():
        if not tvm.module.enabled("llvm"):
            print("Skip because llvm is not enabled")
            return
        mlib = tvm.build(s, [A, B], "llvm", name="myadd")
        server = rpc.Server("localhost")
        remote = rpc.connect(server.host, server.port)
        temp = util.tempdir()
        ctx = remote.cpu(0)
        path_dso = temp.relpath("dev_lib.so")
        mlib.export_library(path_dso)
        remote.upload(path_dso)
        mlib = remote.load_module("dev_lib.so")
        mod = graph_runtime.create(graph, mlib, remote.cpu(0))
        a = np.random.uniform(size=(n,)).astype(A.dtype)
        mod.run(x=tvm.nd.array(a, ctx))
        out = tvm.nd.empty((n,), ctx=ctx)
        out = mod.get_output(0, out)
        np.testing.assert_equal(out.asnumpy(), a + 1)

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def check_sharing():
        from tvm import relay
        x = relay.var('x', shape=(1, 10))
        y = relay.var('y', shape=(1, 10))
        z = relay.add(x, y)
        func = relay.Function([x, y], z)

        x_in = np.ones((1, 10)).astype("float32")
        params = {'x': x_in}
        graph, lib, params = relay.build(func, target="llvm", params=params)

        if not tvm.module.enabled("llvm"):
            print("Skip because llvm is not enabled")
            return
        mod_shared = graph_runtime.create(graph, lib, tvm.cpu(0))
        mod_shared.load_params(relay.save_param_dict(params))
        num_mods = 10
        mods = [graph_runtime.create(graph, lib, tvm.cpu(0))
                for _ in range(num_mods)]

        for mod in mods:
            mod.share_params(mod_shared, relay.save_param_dict(params))

        a = np.random.uniform(size=(1, 10)).astype("float32")
        for mod in mods:
            mod.run(y=a)
            out = mod.get_output(0, tvm.nd.empty((1, 10)))
            np.testing.assert_equal(out.asnumpy(), x_in + a)

        # Explicitly delete the shared module and verify correctness.
        del mod_shared
        for mod in mods:
            mod.run(y=a)
            out = mod.get_output(0, tvm.nd.empty((1, 10)))
            np.testing.assert_equal(out.asnumpy(), x_in + a)
            del mod

121 122
    check_verify()
    check_remote()
123
    check_sharing()
124 125 126

if __name__ == "__main__":
    test_graph_simple()