detect_linear_equation.cc 6.54 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*!
 *  Copyright (c) 2017 by Contributors
 * \file bound_deducer.cc
 * \brief Utility to deduce bound of expression
 */
#include <tvm/expr.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_visitor.h>
#include <tvm/ir_functor_ext.h>
#include <tvm/arithmetic.h>
#include "./compute_expr.h"

namespace tvm {
namespace arith {

using namespace ir;

// Linear equation, the components can be undefined.
struct LinearEqEntry {
  Expr base;
  Expr coeff;
};

24 25 26 27 28
struct IntervalEntry {
  Expr min_value;
  Expr max_value;
};

29 30 31 32 33 34
class LinearEqDetector
    : public ExprFunctor<LinearEqEntry(const Expr&, const Expr &)> {
 public:
  explicit LinearEqDetector(Var var)
      : var_(var) {}

35 36 37 38 39
  bool Detect(const Expr& e, LinearEqEntry* ret) {
    *ret = VisitExpr(e, e);
    if (fail_) return false;
    if (!ret->base.defined()) {
      ret->base = make_zero(var_.type());
40
    }
41 42
    if (!ret->coeff.defined()) {
      ret->coeff = make_zero(var_.type());
43
    }
44
    return true;
45 46 47 48 49 50 51 52 53 54 55
  }

  LinearEqEntry VisitExpr_(const Add* op, const Expr& e) final {
    if (fail_) return LinearEqEntry();
    LinearEqEntry a = VisitExpr(op->a, op->a);
    LinearEqEntry b = VisitExpr(op->b, op->b);
    LinearEqEntry ret;
    ret.base = AddCombine(a.base, b.base);
    ret.coeff = AddCombine(a.coeff, b.coeff);
    return ret;
  }
56 57 58 59 60 61 62 63 64 65 66

  LinearEqEntry VisitExpr_(const Sub* op, const Expr& e) final {
    if (fail_) return LinearEqEntry();
    LinearEqEntry a = VisitExpr(op->a, op->a);
    LinearEqEntry b = VisitExpr(op->b, op->b);
    LinearEqEntry ret;
    ret.base = SubCombine(a.base, b.base);
    ret.coeff = SubCombine(a.coeff, b.coeff);
    return ret;
  }

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  LinearEqEntry VisitExpr_(const Mul* op, const Expr& e) final {
    if (fail_) return LinearEqEntry();
    LinearEqEntry a = VisitExpr(op->a, op->a);
    LinearEqEntry b = VisitExpr(op->b, op->b);
    if (a.coeff.defined()) {
      std::swap(a, b);
    }
    if (a.coeff.defined()) {
      fail_ = true;
      return LinearEqEntry();
    }
    LinearEqEntry ret;
    ret.base = MulCombine(a.base, b.base);
    ret.coeff = MulCombine(a.base, b.coeff);
    return ret;
  }
  LinearEqEntry VisitExpr_(const Variable* op, const Expr& e) final {
    LinearEqEntry ret;
    if (op == var_.get()) {
      ret.coeff = make_const(op->type, 1);
    } else {
      ret.base = e;
    }
    return ret;
  }
  LinearEqEntry VisitExprDefault_(const Node* op, const Expr& e) final {
    if (fail_) return LinearEqEntry();
    if (ExprUseVar(e, var_)) {
      fail_ = true;
      return LinearEqEntry();
    } else {
      LinearEqEntry ret;
      ret.base = e;
      return ret;
    }
  }

 private:
  Var var_;
  bool fail_{false};
  // Combine by add
  Expr AddCombine(Expr a, Expr b) {
    if (!a.defined()) return b;
    if (!b.defined()) return a;
    return ComputeExpr<Add>(a, b);
  }
113 114 115 116 117
  Expr SubCombine(Expr a, Expr b) {
    if (!a.defined()) return -b;
    if (!b.defined()) return a;
    return ComputeExpr<Sub>(a, b);
  }
118 119 120 121 122 123 124
  Expr MulCombine(Expr a, Expr b) {
    if (!a.defined()) return a;
    if (!b.defined()) return b;
    return ComputeExpr<Mul>(a, b);
  }
};

125 126 127 128
Array<Expr> DetectLinearEquation(const Expr& e, const Array<Var>& vars) {
  Expr base = e;
  Array<Expr> coeff;

129 130 131 132 133 134 135 136 137 138
  if (0 == vars.size()) {
    coeff.push_back(make_const(Int(32), 1));
  } else {
    for (Var v : vars) {
      LinearEqEntry ret;
      if (!LinearEqDetector(v).Detect(base, &ret)) {
        return Array<Expr>();
      }
      coeff.push_back(ret.coeff);
      base = std::move(ret.base);
139 140
    }

141 142 143 144 145 146 147
    std::unordered_set<const Variable*> vset;
    for (size_t i = vars.size(); i != 1; --i) {
      vset.insert(vars[i - 1].get());
      // The previous coeff contains the variable
      if (ExprUseVar(coeff[i - 2], vset)) {
        return Array<Expr>();
      }
148 149 150 151
    }
  }
  coeff.push_back(base);
  return coeff;
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
// Detect clip condition as min max value
bool DetectClipBound(
    const Expr& cond,
    std::unordered_map<const Variable*, IntervalEntry>* bmap) {
  int flag = 0;
  Var var;
  auto fvisit = [&bmap, &flag, &var](const NodeRef& n) {
    if (const Variable* v = n.as<Variable>()) {
      if (bmap->count(v)) {
        if (flag == 0) {
          var = Var(n.node_);
          flag = 1;
        } else if (flag == 1) {
          if (!var.same_as(n)) {
            flag = -1;
          }
        }
      }
    }
  };
  PostOrderVisit(cond, fvisit);
  if (flag != 1) return false;
  // canonical form: exp >= 0
  Expr canonical;
  if (const LT* op = cond.as<LT>()) {
    if (!op->a.type().is_int()) return false;
    canonical = op->b - op->a - make_const(op->a.type(), 1);
  } else if (const LE* op = cond.as<LE>()) {
    if (!op->a.type().is_int()) return false;
    canonical = op->b - op->a;
  } else if (const GT* op = cond.as<GT>()) {
    if (!op->a.type().is_int()) return false;
    canonical = op->a - op->b - make_const(op->a.type(), 1);
  } else if (const GE* op = cond.as<GE>()) {
    if (!op->a.type().is_int()) return false;
    canonical = op->a - op->b;
  } else {
    return false;
  }
  LinearEqEntry ret;
  if (!LinearEqDetector(var).Detect(canonical, &ret)) return false;
  ret.coeff = Simplify(ret.coeff);
  IntervalEntry& p = (*bmap)[var.get()];
  if (is_one(ret.coeff)) {
    // var + shift >=0 -> var >= -shift
    if (p.min_value.defined()) {
      p.min_value = ir::Max::make(p.min_value, -ret.base);
    } else {
      p.min_value = -ret.base;
    }
    return true;
  }
  if (is_const(ret.coeff, -1)) {
    // -var + shift >=0 -> var <= shift
    if (p.max_value.defined()) {
      p.max_value = ir::Min::make(p.max_value, ret.base);
    } else {
      p.max_value = ret.base;
    }
    return true;
  }
  return false;
}


template<typename OP>
void SplitCommExpr(const Expr& e, std::vector<Expr>* ret) {
  if (const OP* op = e.as<OP>()) {
    SplitCommExpr<OP>(op->a, ret);
    SplitCommExpr<OP>(op->b, ret);
  } else {
    ret->push_back(e);
  }
}

// Detect the lower and upper bound from the expression.
// e must be connected by and.
Array<Expr> DetectClipBound(const Expr& e, const Array<Var>& vars) {
  std::vector<Expr> splits;
  SplitCommExpr<ir::And>(e, &splits);
  std::unordered_map<const Variable*, IntervalEntry> rmap;
  for (Var v : vars) {
    rmap[v.get()] = IntervalEntry();
  }
  for (Expr cond : splits) {
    if (!DetectClipBound(cond, &rmap)) return Array<Expr>();
  }
  Array<Expr> ret;
  for (Var v : vars) {
    IntervalEntry e = rmap[v.get()];
    if (e.min_value.defined()) {
      e.min_value = Simplify(e.min_value);
    }
    if (e.max_value.defined()) {
      e.max_value = Simplify(e.max_value);
    }
    ret.push_back(e.min_value);
    ret.push_back(e.max_value);
  }
  return ret;
}


257 258
}  // namespace arith
}  // namespace tvm