squeezenet.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=unused-argument

"""
Symbol of SqueezeNet

Reference:
Iandola, Forrest N., et al.
"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016).
"""

from tvm import relay
from tvm.relay.testing import create_workload

# Helpers
def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels, prefix=""):
    net = _make_fire_conv(net, squeeze_channels, 1, 0, "%s/squeeze1x1" % prefix)

    left = _make_fire_conv(net, expand1x1_channels, 1, 0, "%s/expand1x1" % prefix)
    right = _make_fire_conv(net, expand3x3_channels, 3, 1, "%s/expand3x3" % prefix)
    # NOTE : Assume NCHW layout here
    net = relay.concatenate((left, right), axis=1)
    return net


def _make_fire_conv(net, channels, kernel_size, padding=0, prefix=""):
    net = relay.nn.conv2d(net, relay.var("%s_weight" % prefix),
                        channels=channels,
                        kernel_size=(kernel_size, kernel_size),
                        padding=(padding, padding))
    net = relay.nn.bias_add(net, relay.var("%s_bias" % prefix))
    net = relay.nn.relu(net)
    return net


# Net
def get_net(batch_size, image_shape, num_classes, dtype):
    """Get symbol of SqueezeNet

    Parameters
    ----------
    batch_size : int
        The batch size used in the model

    image_shape : tuple
        The input image shape

    num_classes: int
        The number of classification results

    dtype : str
        The data type

    """
    data_shape = (batch_size,) + image_shape
    net = relay.var("data", shape=data_shape, dtype=dtype)
    net = relay.nn.conv2d(net, relay.var("conv1_weight"),
                        channels=64,
                        kernel_size=(3, 3),
                        strides=(2, 2),
                        padding=(0, 0))
    net = relay.nn.bias_add(net, relay.var("conv1_bias"))
    net = relay.nn.relu(net)
    net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
    net = _make_fire(net, 16, 64, 64, 'fire2')
    net = _make_fire(net, 16, 64, 64, "fire3")
    net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
    net = _make_fire(net, 32, 128, 128, "fire4")
    net = _make_fire(net, 32, 128, 128, "fire5")
    net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
    net = _make_fire(net, 48, 192, 192, "fire6")
    net = _make_fire(net, 48, 192, 192, "fire7")
    net = _make_fire(net, 64, 256, 256, "fire8")
    net = _make_fire(net, 64, 256, 256, "fire9")
    net = relay.nn.dropout(net, rate=0.5)
    net = relay.nn.conv2d(net, relay.var('conv10_weight'), channels=num_classes, kernel_size=(1, 1))
    net = relay.nn.bias_add(net, relay.var("conv10_bias"))
    net = relay.nn.relu(net)
    net = relay.nn.global_avg_pool2d(net)
    net = relay.nn.softmax(net, axis=1)
Zhi committed
98
    args = relay.analysis.free_vars(net)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    return relay.Function(args, net)


def get_workload(batch_size=1,
                 image_shape=(3, 224, 224),
                 num_classes=1000,
                 dtype="float32"):
    """Get benchmark workload for SqueezeNet

    Parameters
    ----------
    batch_size : int, optional
        The batch size used in the model

    num_classes : int, optional
        Number of classes

    image_shape : tuple, optional
        The input image shape

    dtype : str, optional
        The data type

    Returns
    -------
    net : relay.Function
        The computational graph

    params : dict of str to NDArray
        The parameters.
    """

    net = get_net(batch_size, image_shape, num_classes, dtype)
    return create_workload(net)