canonical_simplify.cc 35.2 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
9
 *
10
 *   http://www.apache.org/licenses/LICENSE-2.0
11
 *
12 13 14 15 16 17 18 19
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*!
 * \file canonical_simplify.cc
 * \brief Canonical form based simplification.
 */
#include <tvm/arithmetic.h>
#include <tvm/expr_operator.h>
#include <tvm/ir_mutator.h>
#include "const_fold.h"
#include "pattern_match.h"
#include "rewrite_simplify.h"

namespace tvm {
namespace arith {

using namespace ir;

class SumExpr;
class SplitExpr;

39

40 41 42 43 44 45
/*!
 * \brief Base class of all temporary expression introduced
 *        for canonicalization.
 */
class CanonicalExprNode : public BaseExprNode {
 public:
46
  virtual ~CanonicalExprNode() {}
47 48 49 50 51 52 53 54
  /*!
   * \brief Return the normal Expr that is equivalent to self.
   * \note Can mutate the internal data structure.
   * \return The normal expression.
   */
  virtual Expr Normalize() const = 0;

  // overrides
55
  void VisitAttrs(tvm::AttrVisitor* v) {
56 57 58 59 60 61
  }

  static constexpr const char* _type_key = "arith.CanonicalExpr";
  TVM_DECLARE_BASE_NODE_INFO(CanonicalExprNode, BaseExprNode);
};

62 63 64 65 66 67 68 69 70
enum DivMode {
  /*! \brief Truncated division. */
  kTruncDiv,
  /*! \brief Floor division. */
  kFloorDiv
};

inline Expr ModImpl(Expr a, Expr b, DivMode mode) {
  if (mode == kTruncDiv) {
71
    return truncmod(a, b);
72 73 74 75 76 77 78 79
  } else {
    CHECK_EQ(mode, kFloorDiv);
    return floormod(a, b);
  }
}

inline Expr DivImpl(Expr a, Expr b, DivMode mode) {
  if (mode == kTruncDiv) {
80
    return truncdiv(a, b);
81 82 83 84 85 86
  } else {
    CHECK_EQ(mode, kFloorDiv);
    return floordiv(a, b);
  }
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*!
 * \brief Internal "Split normal form" of expression.
 *
 * This is a special expression that represents
 * a scaled value derived from a split of an index.
 *
 * result = ((index % upper_factor) / lower_factor) * scale
 */
class SplitExprNode : public CanonicalExprNode {
 public:
  /*! \brief The base index expression. */
  Expr index;
  /*! \brief The division factor ratio. */
  int64_t lower_factor{1};
  /*!
   * \brief The upper factor.
   * invariance: (upper_factor == kPosInf || upper_factor % lower_factor == 0)
   */
  int64_t upper_factor{kPosInf};
  /*! \brief scale to the expression. */
  int64_t scale{1};
108 109
  /*! \brief Division mode. */
  DivMode div_mode{kTruncDiv};
110 111 112 113 114 115 116 117 118 119 120 121 122

  /*! \brief verify that this is a valid entry. */
  void Verify() const {
    CHECK(upper_factor == kPosInf || upper_factor % lower_factor == 0);
  }

  Expr NormalizeWithScale(int64_t sscale) const {
    Expr res = this->index;
    Type dtype = this->type;
    if (this->scale == 0) {
      return make_const(dtype, 0);
    }
    if (this->upper_factor != SplitExprNode::kPosInf) {
123
      res = ModImpl(res, make_const(dtype, this->upper_factor), div_mode);
124 125
    }
    if (this->lower_factor != 1) {
126
      res = DivImpl(res, make_const(dtype, this->lower_factor), div_mode);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    }
    sscale *= this->scale;
    if (sscale != 1) {
      CHECK(!dtype.is_uint() || sscale > 0);
      res = res * make_const(dtype, sscale);
    }
    return res;
  }

  Expr Normalize() const final {
    return NormalizeWithScale(1);
  }

  void MulToSelf(int64_t scale) {
    this->scale *= scale;
  }

  inline bool IndexEqual(const SplitExpr& other) const;
145
  inline bool DivModeCompatibleTo(DivMode mode) const;
146 147 148 149 150 151 152 153 154 155 156 157 158 159

  /*! \brief positive infty */
  static const constexpr int64_t kPosInf = ConstIntBoundNode::kPosInf;
  static constexpr const char* _type_key = "arith.SplitExpr";
  TVM_DECLARE_NODE_TYPE_INFO(SplitExprNode, CanonicalExprNode);
};

TVM_DEFINE_COW_NODE_REF(SplitExpr, Expr, SplitExprNode);

inline bool SplitExprNode::IndexEqual(const SplitExpr& other) const {
  if (index.same_as(other->index)) return true;
  return ir::Equal(index, other->index);
}

160 161 162 163 164 165
inline bool SplitExprNode::DivModeCompatibleTo(DivMode mode) const {
  if (this->div_mode == mode) return true;
  if (lower_factor == 1 && upper_factor == kPosInf) return true;
  return false;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*!
 * \brief Normal form that represents sum of expressions.
 *
 *  result = sum(args) + base.
 */
class SumExprNode : public CanonicalExprNode {
 public:
  /*!
   * \brief arguments to be summed up.
   *
   * args are divided into segments with the same index.
   * within each segment, the SplitExpr is ordered in descending order of lower_factor.
   */
  std::vector<SplitExpr> args;
  /*! \brief Base value in the summation. */
  int64_t base{0};
182 183 184 185
  /*! \brief The expression equals zero. */
  bool IsZero() const {
    return base == 0 && args.size() == 0;
  }
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  /*!
   * \brief Return the normal Expr that is equivalent to self.
   * \return The normal expression.
   */
  Expr Normalize() const final {
    // quick path 1.
    if (this->args.size() == 0) {
      return make_const(this->type, this->base);
    }
    return Normalize_(this->type,
                      SimplifySplitExprs(args),
                      base);
  }
  /*!
   * \brief Whether self is divisible by scale.
   * \param scale The scale to be applied.
   */
  bool DivisibleBy(int64_t scale) {
    if (base % scale != 0) return false;
    for (size_t i = 0; i < this->args.size(); ++i) {
      if (args[i]->scale % scale != 0) return false;
    }
    return true;
  }
  /*!
   * \brief mul scale to self.
   * \param scale The scale to be applied.
   */
  void MulToSelf(int64_t scale) {
    this->base *= scale;
    for (size_t i = 0; i < this->args.size(); ++i) {
      args[i].CopyOnWrite()->scale *= scale;
    }
  }
  /*!
   * \brief divide by scale.
   * \param scale The scale to be applied.
   */
  void DivideBy(int64_t scale) {
    CHECK_EQ(this->base % scale, 0);
    this->base /= scale;
    for (size_t i = 0; i < this->args.size(); ++i) {
      CHECK_EQ(args[i]->scale % scale, 0);
      args[i].CopyOnWrite()->scale /= scale;
    }
  }
  /*!
   * \brief add constant value to self.
   * \param value to be added.
   */
  void AddToSelf(int64_t value) {
    this->base += value;
  }
  /*!
   * \brief self += other * scale;
   * \param other The expression to be added.
   * \param scale The additional scale on value.
   */
  void AddToSelf(SplitExpr other, int64_t scale) {
    if (other->scale == 0) return;
    // We need to maintain the segment invariance:
    // Same index are stored close to each other.
    // sorted from big lower_factor to small one.
    size_t start = 0;
    for (; start < args.size(); ++start) {
      if (args[start]->IndexEqual(other)) break;
    }
    for (size_t j = start; j < args.size(); ++j) {
      if (!args[j]->IndexEqual(other) ||
          other->lower_factor > args[j]->lower_factor) {
        other.CopyOnWrite()->scale *= scale;
        this->args.insert(this->args.begin() + j, other);
        return;
      }
      if (other->lower_factor == args[j]->lower_factor &&
261 262
          other->upper_factor == args[j]->upper_factor &&
          other->DivModeCompatibleTo(args[j]->div_mode)) {
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
        args[j].CopyOnWrite()->scale += other->scale * scale;
        return;
      }
    }
    // Insert other in the end.
    other.CopyOnWrite()->scale *= scale;
    this->args.emplace_back(std::move(other));
  }

  void AddToSelf(const SumExpr& other, int64_t scale);

  static constexpr const char* _type_key = "arith.SumExpr";
  TVM_DECLARE_NODE_TYPE_INFO(SumExprNode, CanonicalExprNode);

 private:
  /*!
   * \brief Simplify the args by merging SplitExprs
   * \param args The original list of arguments.
   * \return simplified version.
   */
  static std::vector<SplitExpr>
  SimplifySplitExprs(std::vector<SplitExpr> args) {
    // NOTE: This algorithm relies on the factor that args are divided into segments
    // and each segment is sorted in descending order of lower_factor.
    for (size_t i = 0; i < args.size(); ++i) {
      if (args[i]->scale == 0) continue;
      for (size_t j = i + 1; j < args.size(); ++j) {
        SplitExpr& lhs = args[i];
        SplitExpr& rhs = args[j];
        if (!lhs->IndexEqual(rhs)) break;
        if (lhs->upper_factor < rhs->lower_factor) break;
294
        if (lhs->upper_factor == rhs->upper_factor &&
295 296
            lhs->lower_factor == rhs->lower_factor &&
            lhs->DivModeCompatibleTo(rhs->div_mode)) {
297 298 299 300
          // folding same co-efficient.
          rhs.CopyOnWrite()->scale += lhs->scale;
          lhs.CopyOnWrite()->scale = 0;
        } else if (lhs->lower_factor == rhs->upper_factor &&
301
                   rhs->scale != 0 &&
302
                   lhs->scale % rhs->scale == 0 &&
303 304
                   lhs->lower_factor == (lhs->scale / rhs->scale) * rhs->lower_factor &&
                   lhs->DivModeCompatibleTo(rhs->div_mode)) {
305 306 307 308 309 310 311 312 313 314 315
          // Rules used in the proof:
          //
          // Rule 1:  (x % (c * s)) / c  =  (x / c) % s
          // Proof:
          //  x can always be decomposed into p * c * s + q * c + r
          //  where  0 <= q * c + r < c * s  and  0 <= r  <  c.
          //  Then, lhs = ((p * c * s + q * c + r) % (c * s)) / c = (q * c + r) / c = q
          //  rhs = ((p * c * s + q * c + r) / c) % s = (p * s + q) % s = q
          //  Thus, lhs = rhs
          //
          // The above proof is for the floordiv.
316
          // The same rule also holds for truncdiv(division rule in C).
317 318 319 320
          // Because both sides only involve mul, div and mod,
          // we can take abs of x, c and s, apply the floordiv proof,
          // and finally add the sign back.
          //
321
          // Rule 2:  (x / s) * s + x % s = x  (true for both trunc and floor div)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
          //
          // General merge condition and proof:
          // - x = lhs->index % lhs->upper_factor
          // - s = lhs->scale / rhs->scale
          // - c = rhs->lower_factor
          //
          //    (x / (c * s)) * s + (x % (c * s)) / c
          // => ((x / c) / s) * s + ((x / c) % s)
          // => (x / c)
          //
          // Examples:
          //
          //    (z / 6) * 6 + ((z % 6) / 3) * 3
          // => ((z / 6) * 2 + (z % 6) / 3) * 3
          // => (z / 3) * 3
          // note: x = z, c = 3, s = 2
          //
          //    ((z % 12) / 6) * 6 + ((z % 6) / 3) * 3
          // => (((z % 12) / 6) * 2 + ((z % 12) % 6) / 3) * 3
          // => ((z % 12) / 3) * 3
          // note: x = z % 12, c = 3, s = 2
          // note also the invariance lhs->upper_factor % lhs->lower_factor == 0
          //
          SplitExprNode* merged = rhs.CopyOnWrite();
          merged->upper_factor = lhs->upper_factor;
          // reset args[i] to be zero.
          lhs.CopyOnWrite()->scale = 0;
          break;
        }
      }
    }
    // sort by the entry
    // Here we simply sort by descending order of scales.
    // For now, we do not compare by index because that comparison
    // can be runtime dependent and create inderminism.
    // we do not sort by index for now because it can be costly
    // to deep compare Exprs, and address of Vars can be runtime dependent.
    //
    auto fcompare = [](const SplitExpr& lhs, const SplitExpr& rhs) {
      // order by scale first
      if (lhs->scale > rhs->scale) return true;
      if (lhs->scale < rhs->scale) return false;
      // then order by factor
      if (lhs->lower_factor > rhs->lower_factor) return true;
      if (lhs->lower_factor < rhs->lower_factor) return false;
      // then order by upper factor
      if (lhs->upper_factor > rhs->upper_factor) return true;
      if (lhs->upper_factor < rhs->upper_factor) return false;
370 371 372
      // then order by div mode
      if (lhs->div_mode > rhs->div_mode) return true;
      if (lhs->div_mode < rhs->div_mode) return false;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
      // tie.
      // TODO(tvm-team) We might consider index as the last comparison point,
      // after we make deep comparator more derministic.
      // Specifically, we can consider comparing names of vars and break ties with address.
      return false;
    };
    std::stable_sort(args.begin(), args.end(), fcompare);
    return args;
  }
  static Expr Normalize_(Type dtype,
                         const std::vector<SplitExpr>& args,
                         int64_t base) {
    // Positive scales first
    Expr res = make_const(dtype, 0);
    for (size_t i = 0; i < args.size(); ++i) {
      if (args[i]->scale > 0) {
        res = res + args[i]->Normalize();
      }
    }
    if (base > 0) {
      res = res + make_const(dtype, base);
    }
    // negative scales follows using sub.
    for (size_t i = 0; i < args.size(); ++i) {
      if (args[i]->scale < 0) {
        res = res - args[i]->NormalizeWithScale(-1);
      }
    }
    if (base < 0) {
      res = res - make_const(dtype, -base);
    }
    return res;
  }
};

TVM_DEFINE_COW_NODE_REF(SumExpr, Expr, SumExprNode);

void SumExprNode::AddToSelf(const SumExpr& other, int64_t scale) {
  // NOTE: it is rare to have a balanced long expression,
  // linear scan is fine for our case.
  for (size_t i = 0; i < other->args.size(); ++i) {
    this->AddToSelf(other->args[i], scale);
  }
  this->AddToSelf(other->base * scale);
}

// Sub-class RewriteSimplifier::Impl to take benefit of
// rewriter for condition simplification etc.
class CanonicalSimplifier::Impl : public RewriteSimplifier::Impl {
 public:
  using Rewriter = RewriteSimplifier::Impl;

  explicit Impl(Analyzer* parent)
      : Rewriter(parent) {}


  Expr CanonicalSimplify(Expr expr) {
    expr =  Mutate(expr);
    return expr;
  }

  // override the original mutate function.
  Expr Mutate(Expr expr) final {
    expr = IRMutator::Mutate(expr);
    return Normalize(expr);
  }

  // Normal mutation without normalization.
  Expr CanonicalMutate(Expr expr) {
    return IRMutator::Mutate(expr);
  }

  using Rewriter::Mutate_;
  Expr Mutate_(const Add* op, const Expr& self) final;
  Expr Mutate_(const Sub* op, const Expr& self) final;
  Expr Mutate_(const Mul* op, const Expr& self) final;
  Expr Mutate_(const Div* op, const Expr& self) final;
  Expr Mutate_(const Mod* op, const Expr& self) final;
451 452
  Expr Mutate_(const FloorDiv* op, const Expr& self) final;
  Expr Mutate_(const FloorMod* op, const Expr& self) final;
453 454 455 456 457 458 459
  Expr Mutate_(const Reduce* op, const Expr& self) final;

 private:
  /*!
   * \brief compute lhs / cval
   * \param lhs The left operand.
   * \param cval The constant value.
460
   * \param div_mode The division mode.
461 462
   * \return The result expression;
   */
463
  SplitExpr SplitDivConst(SplitExpr lhs, int64_t cval, DivMode div_mode);
464 465 466 467
  /*!
   * \brief compute lhs % cval
   * \param lhs The left operand.
   * \param cval The constant value.
468
   * \param div_mode The division mode.
469 470
   * \return The result expression;
   */
471
  SplitExpr SplitModConst(SplitExpr lhs, int64_t cval, DivMode div_mode);
472
  /*!
473
   * \brief Separate psum into divisible and non-divisible parts.
474 475 476 477 478
   * \param psum The sum expression.
   * \param coeff The co-efficient.
   * \param out_divisible The result divisible component.
   * \param out_non_divisible The non-divisible component.
   */
479 480 481 482
  void SeparateDivisibleParts(const SumExprNode* psum,
                              int64_t coeff,
                              SumExpr* out_divisible,
                              SumExpr* out_non_divisible);
483 484 485 486 487 488
  /*!
   * \brief Normalize expr to normal expr.
   * \param expr The input expression.
   * \return Normalized expr.
   */
  Expr Normalize(Expr expr) {
489
    if (const auto* op = expr.as<CanonicalExprNode>()) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503
      return op->Normalize();
    } else {
      return expr;
    }
  }
  /*!
   * \brief Create a SplitExpr from expr.
   * \param expr The input expr.
   * \return The transformed SplitExpr.
   */
  SplitExpr ToSplitExpr(Expr expr) {
    if (const auto* op = expr.as<SplitExprNode>()) {
      return GetRef<SplitExpr>(op);
    }
504 505 506
    if (const auto* op = expr.as<SumExprNode>()) {
      if (op->base == 0 && op->args.size() == 1) return op->args[0];
    }
507
    if (const auto* op = expr.as<CanonicalExprNode>()) {
508 509 510 511 512
      expr = op->Normalize();
    }
    NodePtr<SplitExprNode> n = make_node<SplitExprNode>();
    n->type = expr.type();
    n->index = std::move(expr);
513
    n->div_mode = kTruncDiv;
514 515 516
    return SplitExpr(n);
  }
  /*!
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
   * \brief Convert expr to an equivalent SplitExpr
   *        that has the specified div_mode.
   *
   * This function will return the same expr if its
   * div_mode already satisfies the need.
   *
   * \param expr The input expr.
   * \param div_mode The new div_mode.
   * \return The transformed SplitExpr.
   */
  SplitExpr ConvertDivMode(SplitExpr expr, DivMode div_mode) {
    if (expr->div_mode == div_mode) return expr;
    if (expr->DivModeCompatibleTo(div_mode)) {
      expr.CopyOnWrite()->div_mode = div_mode;
      return expr;
    }
    expr = ToSplitExpr(Normalize(expr));
    CHECK(expr->DivModeCompatibleTo(div_mode));
    expr.CopyOnWrite()->div_mode = div_mode;
    return expr;
  }
  /*!
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
   * \brief Create a SumExpr from expr.
   * \param expr The input expr.
   * \return The transformed SumExpr.
   */
  SumExpr ToSumExpr(Expr expr) {
    if (const auto* op = expr.as<SumExprNode>()) {
      return GetRef<SumExpr>(op);
    }
    NodePtr<SumExprNode> n = make_node<SumExprNode>();
    n->type = expr.type();
    if (const auto* op = expr.as<IntImm>()) {
      n->base = op->value;
      return SumExpr(n);
    } else {
      n->args.emplace_back(ToSplitExpr(expr));
      return SumExpr(n);
    }
  }
  // Simplify the combiner used in reduce.
  Expr SimplifyReduceCombiner(const Reduce* op);
};

Expr CanonicalSimplifier::Impl::
Mutate_(const Add* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
  // normalize
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<Add>(a, b);
  if (const_res.defined()) return const_res;

  // canonical form simplification.
  SumExpr ret = ToSumExpr(std::move(a));

  if (const auto* op = b.as<IntImm>()) {
    ret.CopyOnWrite()->AddToSelf(op->value);
  } else if (const auto* op = b.as<SumExprNode>()) {
    ret.CopyOnWrite()->AddToSelf(GetRef<SumExpr>(op), 1);
  } else {
    ret.CopyOnWrite()->AddToSelf(ToSplitExpr(b), 1);
  }
584
  return std::move(ret);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
}

Expr CanonicalSimplifier::Impl::
Mutate_(const Sub* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
  // normalize
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<Sub>(a, b);
  if (const_res.defined()) return const_res;

  // canonical form simplification.
  SumExpr ret = ToSumExpr(std::move(a));

  if (const auto* op = b.as<IntImm>()) {
    ret.CopyOnWrite()->AddToSelf(-op->value);
  } else if (const auto* op = b.as<SumExprNode>()) {
    ret.CopyOnWrite()->AddToSelf(GetRef<SumExpr>(op), -1);
  } else {
    ret.CopyOnWrite()->AddToSelf(ToSplitExpr(b), -1);
  }
610
  return std::move(ret);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
}


Expr CanonicalSimplifier::Impl::
Mutate_(const Mul* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
  // normalize
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<Mul>(a, b);
  if (const_res.defined()) return const_res;

  // x * c
  if (a.as<IntImm>()) {
    std::swap(a, b);
  }
  if (const auto* bconst = b.as<IntImm>()) {
    if (a.as<SumExprNode>()) {
633
      SumExpr ret = Downcast<SumExpr>(std::move(a));
634
      ret.CopyOnWrite()->MulToSelf(bconst->value);
635
      return std::move(ret);
636 637 638
    } else {
      SplitExpr ret = ToSplitExpr(std::move(a));
      ret.CopyOnWrite()->MulToSelf(bconst->value);
639
      return std::move(ret);
640 641 642 643 644 645 646 647 648 649 650 651 652
    }
  }

  // normal path.
  a = Normalize(a);
  b = Normalize(b);
  if (op->a.same_as(a) && op->b.same_as(b)) {
    return self;
  } else {
    return Mul::make(a, b);
  }
}

653 654 655 656 657
void CanonicalSimplifier::Impl::
SeparateDivisibleParts(const SumExprNode* psum,
                       int64_t coeff,
                       SumExpr* out_divisible,
                       SumExpr* out_non_divisible) {
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
  auto divisible = make_node<SumExprNode>();
  auto non_divisible = make_node<SumExprNode>();
  divisible->type = psum->type;
  non_divisible->type = psum->type;

  if (psum->base % coeff == 0) {
    divisible->base = psum->base;
  } else {
    non_divisible->base = psum->base;
  }
  for (const auto& e : psum->args) {
    if (e->scale % coeff == 0) {
      divisible->args.push_back(e);
    } else {
      non_divisible->args.push_back(e);
    }
  }
  *out_divisible = SumExpr(divisible);
  *out_non_divisible = SumExpr(non_divisible);
}

SplitExpr CanonicalSimplifier::Impl::
680 681 682 683 684
SplitDivConst(SplitExpr lhs, int64_t cval, DivMode div_mode) {
  CHECK_GT(cval, 0);
  lhs = ConvertDivMode(lhs, div_mode);

  // the following rule works for both floordiv and truncdiv
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
  if (lhs->scale % cval == 0) {
    lhs.CopyOnWrite()->scale /= cval;
    return lhs;
  }

  if (cval % lhs->scale == 0) {
    int64_t scaled_cval = cval / lhs->scale;
    if (lhs->upper_factor == SplitExprNode::kPosInf ||
        lhs->upper_factor % (lhs->lower_factor * scaled_cval) == 0) {
      // directly fold division.
      lhs.CopyOnWrite()->scale = 1;
      lhs.CopyOnWrite()->lower_factor *= scaled_cval;
      lhs->Verify();
      return lhs;
    } else if (lhs->upper_factor <= (lhs->lower_factor * scaled_cval)) {
      // (x % c1) / c2  => 0 when c2 >= c1
      return ToSplitExpr(make_zero(lhs.type()));
    } else {
      // move the upper_factor modular into index.
      lhs.CopyOnWrite()->index =
705
          ModImpl(lhs->index, make_const(lhs.type(), lhs->upper_factor), div_mode);
706 707 708 709 710 711 712 713 714
      lhs.CopyOnWrite()->upper_factor = SplitExprNode::kPosInf;
      lhs.CopyOnWrite()->scale = 1;
      lhs.CopyOnWrite()->lower_factor *= scaled_cval;
      lhs->Verify();
      return lhs;
    }
  }
  // directly return the split with cval == 1
  lhs = ToSplitExpr(Normalize(lhs));
715
  CHECK(lhs->DivModeCompatibleTo(div_mode));
716 717 718 719 720 721 722 723 724 725
  CHECK_EQ(lhs->scale, 1);
  lhs.CopyOnWrite()->lower_factor *= cval;
  return lhs;
}

Expr CanonicalSimplifier::Impl::
Mutate_(const Div* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<Div>(a, b);
  if (const_res.defined()) return const_res;
  PVar<Integer> c1;
  // x / c1
  if (c1.Match(b) && c1.Eval()->value > 0) {
    int64_t cval = c1.Eval()->value;
    if (cval == 1) return a;

    if (const auto* psum = a.as<SumExprNode>()) {
      SumExpr lhs, extra;
741 742 743 744 745 746 747
      SeparateDivisibleParts(psum, cval, &lhs, &extra);
      // can be divided by cval
      if (extra->IsZero()) {
        lhs.CopyOnWrite()->DivideBy(cval);
        return std::move(lhs);
      }
      // both lhs and extra are non-negative
748 749
      if (analyzer_->CanProveGreaterEqual(lhs->Normalize(), 0) &&
          analyzer_->CanProveGreaterEqual(extra->Normalize(), 0)) {
750 751 752 753 754
        lhs.CopyOnWrite()->DivideBy(cval);
        Expr temp = Normalize(extra);
        if (const auto* pconst = temp.as<IntImm>()) {
          lhs.CopyOnWrite()->AddToSelf(pconst->value / cval);
        } else {
755
          // if 0 <= extra < cval, it means the extra can be eliminated.
756 757
          if (TryCompare(temp, cval) != kLT) {
            lhs.CopyOnWrite()->AddToSelf(
758
                SplitDivConst(ToSplitExpr(temp), cval, kTruncDiv), 1);
759 760
          }
        }
761
        return std::move(lhs);
762 763 764
      }
    } else {
      // if a >= 0 && a < cval, then result == 0
765
      auto cbound = analyzer_->const_int_bound(Normalize(a));
766 767 768 769
      if (cbound->min_value >= 0 && cbound->max_value < cval) {
        return make_zero(a.type());
      }
    }
770
    return SplitDivConst(ToSplitExpr(std::move(a)), cval, kTruncDiv);
771 772 773 774 775 776 777 778 779 780 781
  }
  // normal path
  a = Normalize(a);
  b = Normalize(b);
  if (op->a.same_as(a) && op->b.same_as(b)) {
    return self;
  } else {
    return Div::make(a, b);
  }
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
Expr CanonicalSimplifier::Impl::
Mutate_(const FloorDiv* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<FloorDiv>(a, b);
  if (const_res.defined()) return const_res;
  PVar<Integer> c1;
  // x / c1
  if (c1.Match(b) && c1.Eval()->value > 0) {
    int64_t cval = c1.Eval()->value;
    if (cval == 1) return a;

    if (const auto* psum = a.as<SumExprNode>()) {
      SumExpr lhs, extra;
      SeparateDivisibleParts(psum, cval, &lhs, &extra);
      if (extra->IsZero()) {
        lhs.CopyOnWrite()->DivideBy(cval);
        return std::move(lhs);
      }
      // continue simplification.
      lhs.CopyOnWrite()->DivideBy(cval);
      Expr temp = Normalize(extra);
      if (const auto* pconst = temp.as<IntImm>()) {
        lhs.CopyOnWrite()->AddToSelf(floordiv(pconst->value, cval));
      } else {
        // if 0 <= extra < cval, it means the extra can be eliminated.
813
        if (!(TryCompare(temp, cval) == kLT && analyzer_->CanProveGreaterEqual(temp, 0))) {
814 815 816 817 818 819 820
          lhs.CopyOnWrite()->AddToSelf(
              SplitDivConst(ToSplitExpr(temp), cval, kFloorDiv), 1);
        }
      }
      return std::move(lhs);
    } else {
      // if a >= 0 && a < cval, then result == 0
821
      auto cbound = analyzer_->const_int_bound(Normalize(a));
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
      if (cbound->min_value >= 0 && cbound->max_value < cval) {
        return make_zero(a.type());
      }
    }
    return SplitDivConst(ToSplitExpr(std::move(a)), cval, kFloorDiv);
  }
  // normal path
  a = Normalize(a);
  b = Normalize(b);
  if (op->a.same_as(a) && op->b.same_as(b)) {
    return self;
  } else {
    return FloorDiv::make(a, b);
  }
}

838
SplitExpr CanonicalSimplifier::Impl::
839 840 841 842
SplitModConst(SplitExpr lhs, int64_t cval, DivMode div_mode) {
  CHECK_GT(cval, 0);
  lhs = ConvertDivMode(lhs, div_mode);

843 844 845 846 847 848 849 850 851 852 853 854
  if (lhs->scale % cval == 0) {
    lhs.CopyOnWrite()->scale = 0;
    return lhs;
  }
  if (cval % lhs->scale == 0) {
    // (x * c1) % (c2 * c1) => (x % c2) * c1
    int64_t scaled_cval = cval / lhs->scale;
    //  (x / c1) % c2  =>  (x % (c1 * c2)) / c2
    int64_t new_upper_factor = lhs->lower_factor * scaled_cval;
    // try to see if we can reduce the existing upper modular.
    if (lhs->upper_factor == SplitExprNode::kPosInf ||
        lhs->upper_factor % new_upper_factor == 0) {
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
      // we gained a new upper factor that is smaller
      // than the original one
      // Perhaps there are more chances in simplifying the index
      // Do a recursive call to simplify the mod with the new factor.
      if (new_upper_factor < lhs->upper_factor &&
          lhs->upper_factor != SplitExprNode::kPosInf) {
        auto updated = ToSplitExpr(Mutate(ModImpl(
            lhs->index, make_const(lhs.type(), new_upper_factor), div_mode)));
        // re-apply the lower_factor
        if (lhs->lower_factor != 1) {
          return SplitDivConst(updated, lhs->lower_factor, div_mode);
        } else {
          return updated;
        }
      } else {
        lhs.CopyOnWrite()->upper_factor = new_upper_factor;
        return lhs;
      }
873 874 875 876 877 878 879
    } else if (new_upper_factor % lhs->upper_factor == 0) {
      // (x % 2) % 4 => x % 2
      return lhs;
    }
  }
  // Normalize the value.
  lhs = ToSplitExpr(Normalize(lhs));
880
  CHECK(lhs->DivModeCompatibleTo(div_mode));
881 882
  CHECK_EQ(lhs->scale, 1);
  CHECK_EQ(lhs->lower_factor, 1);
883
  lhs.CopyOnWrite()->div_mode = div_mode;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
  lhs.CopyOnWrite()->upper_factor = cval;
  return lhs;
}

Expr CanonicalSimplifier::Impl::
Mutate_(const Mod* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
  // normalize
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<Mod>(a, b);
  if (const_res.defined()) return const_res;

  PVar<Integer> c1;
  // x % c1
  if (c1.Match(b) && c1.Eval()->value > 0) {
    int64_t cval = c1.Eval()->value;
    if (const auto* psum = a.as<SumExprNode>()) {
      SumExpr lhs, extra;
907 908 909 910 911
      SeparateDivisibleParts(psum, cval, &lhs, &extra);
      if (extra->IsZero()) {
        return make_zero(a.type());
      }
      // both lhs and extra are non-negative
912 913
      if (analyzer_->CanProveGreaterEqual(lhs->Normalize(), 0) &&
          analyzer_->CanProveGreaterEqual(extra->Normalize(), 0)) {
914 915
        Expr temp = Normalize(extra);
        if (temp.as<IntImm>()) {
916
          return truncmod(temp, c1.Eval());
917 918 919 920 921
        } else {
          // If temp < cval && temp >=0 then can remove the mod.
          if (TryCompare(temp, cval) == kLT) {
            return temp;
          } else {
922 923 924 925
            // contonue to use logic below.
            a = extra;
            psum = a.as<SumExprNode>();
            CHECK(psum != nullptr);
926 927 928
          }
        }
      }
929 930
      // Simplify the offset constant if necessary.
      // (x - 5) % 3 => (x - 2) % 3 if x - 5 >= 0
931
      auto cbound = analyzer_->const_int_bound(Normalize(a));
932 933 934
      int64_t new_base = psum->base % cval;
      if (cbound->min_value >= 0 &&
          cbound->min_value - psum->base + new_base >= 0) {
935
        SumExpr sum_expr = Downcast<SumExpr>(a);
936
        sum_expr.CopyOnWrite()->base = new_base;
937
        return SplitModConst(ToSplitExpr(std::move(sum_expr)), cval, kTruncDiv);
938
      }
939 940
    } else {
      // if a >= 0 && a < cval, then result == 0
941
      auto cbound = analyzer_->const_int_bound(Normalize(a));
942 943 944 945
      if (cbound->min_value >= 0 && cbound->max_value < cval) {
        return a;
      }
    }
946
    return SplitModConst(ToSplitExpr(std::move(a)), cval, kTruncDiv);
947 948 949 950 951 952 953 954 955 956 957
  }
  // normal path
  a = Normalize(a);
  b = Normalize(b);
  if (op->a.same_as(a) && op->b.same_as(b)) {
    return self;
  } else {
    return Mod::make(a, b);
  }
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
Expr CanonicalSimplifier::Impl::
Mutate_(const FloorMod* op, const Expr& self) {
  if (!IsIndexType(op->type)) {
    return Rewriter::Mutate_(op, self);
  }
  // normalize
  Expr a = this->CanonicalMutate(op->a);
  Expr b = this->CanonicalMutate(op->b);

  // const folding
  Expr const_res = TryConstFold<FloorMod>(a, b);
  if (const_res.defined()) return const_res;

  PVar<Integer> c1;
  // x % c1
  if (c1.Match(b) && c1.Eval()->value > 0) {
    int64_t cval = c1.Eval()->value;
    if (const auto* psum = a.as<SumExprNode>()) {
      SumExpr lhs, extra;
      SeparateDivisibleParts(psum, cval, &lhs, &extra);
      Expr temp = Normalize(extra);
      if (temp.as<IntImm>()) {
        return floormod(temp, c1.Eval());
      } else {
        // If temp < cval && temp >=0 then can remove the mod.
        if (TryCompare(temp, cval) == kLT &&
984
            analyzer_->CanProveGreaterEqual(temp, 0)) {
985 986 987 988 989 990 991 992 993 994 995
          return temp;
        } else {
          // contonue to use logic below.
          a = extra;
          psum = a.as<SumExprNode>();
          CHECK(psum != nullptr);
        }
      }
      // Simplify the offset constant if necessary.
      // floormod(x - 5, 3) => floormod(x + 1, 3)
      int64_t new_base = floormod(psum->base, cval);
996
      SumExpr sum_expr = Downcast<SumExpr>(std::move(a));
997 998 999 1000
      sum_expr.CopyOnWrite()->base = new_base;
      return SplitModConst(ToSplitExpr(std::move(sum_expr)), cval, kFloorDiv);
    } else {
      // if a >= 0 && a < cval, then result == a
1001
      auto cbound = analyzer_->const_int_bound(Normalize(a));
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
      if (cbound->min_value >= 0 && cbound->max_value < cval) {
        return a;
      }
    }
    return SplitModConst(ToSplitExpr(std::move(a)), cval, kFloorDiv);
  }
  // normal path
  a = Normalize(a);
  b = Normalize(b);
  if (op->a.same_as(a) && op->b.same_as(b)) {
    return self;
  } else {
    return FloorMod::make(a, b);
  }
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
// Simplify reduce expression.
Expr CanonicalSimplifier::Impl::
SimplifyReduceCombiner(const Reduce* op) {
  // First simplify the results
  Array<Expr> simplified_result;
  for (const auto& res : op->combiner->result) {
    Expr new_res = Mutate(res);
    simplified_result.push_back(new_res);
  }

  // Which components to keep
  std::vector<int> used(op->combiner->result.size(), false);

  // This function recursively marks the used components starting from
  // the index idx
  std::function<void(int)> mark_used;
  mark_used = [&used, &simplified_result, op, &mark_used](size_t idx) {
    // if the idx-th component was marked as used before, do nothing
    if (used[idx]) return;
    used[idx] = true;

    // check if the idx-th result expr uses some lhs or rhs variables
    // and recursively mark the corresponding components
    for (size_t i = 0; i < simplified_result.size(); ++i)
      if (!used[i]) {
        if (ExprUseVar(simplified_result[idx], op->combiner->lhs[i]) ||
            ExprUseVar(simplified_result[idx], op->combiner->rhs[i]))
          mark_used(i);
      }
  };

  // mark all used components starting from the value_index
  mark_used(op->value_index);

  // components which have side effects should also be preserved
  for (size_t i = 0; i < used.size(); ++i) {
    if (HasSideEffect(op->source[i]) ||
        HasSideEffect(op->combiner->identity_element[i]) ||
        HasSideEffect(op->combiner->result[i])) {
      mark_used(i);
    }
  }

  int new_value_index = op->value_index;
  Array<Expr> new_result;
  Array<Expr> new_identity;
  Array<Var> new_lhs;
  Array<Var> new_rhs;
  Array<Expr> new_source;

  // new stuff is old stuff which is used
  for (size_t i = 0; i < used.size(); ++i) {
    if (used[i]) {
      // We simplify the result and identity, but not the source
      new_result.push_back(simplified_result[i]);
      new_identity.push_back(Mutate(op->combiner->identity_element[i]));
      new_lhs.push_back(op->combiner->lhs[i]);
      new_rhs.push_back(op->combiner->rhs[i]);
      new_source.push_back(op->source[i]);
    } else if (static_cast<int>(i) < op->value_index) {
      // value_index should also be adjusted
      new_value_index--;
    }
  }

  CommReducer new_combiner =
      CommReducerNode::make(new_lhs, new_rhs, new_result, new_identity);
  return Reduce::make(
      new_combiner, new_source, op->axis, op->condition, new_value_index);
}

Expr CanonicalSimplifier::Impl::
Mutate_(const Reduce* op, const Expr& self) {
  // Recursively call simplification when necessary.
1092
  Expr ret = RewriteSimplifier::Impl::Mutate_(op, self);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  op = ret.as<Reduce>();
  // already been simplified by const reduction axis removal
  if (op == nullptr) return ret;
  if (op->axis.empty()) {
    // Note that here we assume that the identity element is indeed identity. Without this
    // assumption we would have to perform a single iteration of the loop, i.e. use
    // `(*op->combiner.get())(op->combineop->identity_element, op->source)[op->value_index]`
    // instead of `op->source[op->value_index]`. The former may be more difficult to simplify.
    return Mutate(
        Select::make(op->condition,
                     op->source[op->value_index],
                     op->combiner->identity_element[op->value_index]));
  }
  // combiner simplification.
  ret = SimplifyReduceCombiner(op);
  return ret;
}

Expr CanonicalSimplifier::operator()(const Expr& expr) {
  return impl_->CanonicalSimplify(expr);
}

void CanonicalSimplifier::Update(const Var& var,
                                 const Expr& info,
                                 bool override) {
  impl_->Update(var, info, override);
}

CanonicalSimplifier::CanonicalSimplifier(Analyzer* parent)
    : impl_(new Impl(parent)) {
}

CanonicalSimplifier::~CanonicalSimplifier() {
  delete impl_;
}

}  // namespace arith
}  // namespace tvm