test_edgetpu_runtime.py 3.37 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import tvm
19
from tvm import te
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
import numpy as np
from tvm import rpc
from tvm.contrib import util, tflite_runtime
# import tflite_runtime.interpreter as tflite


def skipped_test_tflite_runtime():

    def get_tflite_model_path(target_edgetpu):
        # Return a path to the model
        edgetpu_path = os.getenv('EDGETPU_PATH', "/home/mendel/edgetpu")
        # Obtain mobilenet model from the edgetpu repo path
        if target_edgetpu:
            model_path = os.path.join(edgetpu_path, "test_data/mobilenet_v1_1.0_224_quant_edgetpu.tflite")
        else:
            model_path = os.path.join(edgetpu_path, "test_data/mobilenet_v1_1.0_224_quant.tflite")
        return model_path

    def init_interpreter(model_path, target_edgetpu):
        # Initialize interpreter
        if target_edgetpu:
            edgetpu_path = os.getenv('EDGETPU_PATH', "/home/mendel/edgetpu")
            libedgetpu = os.path.join(edgetpu_path, "libedgetpu/direct/aarch64/libedgetpu.so.1")
            interpreter = tflite.Interpreter(
                    model_path=model_path,
                    experimental_delegates=[tflite.load_delegate(libedgetpu)])
        else:
            interpreter = tflite.Interpreter(model_path=model_path)
        return interpreter

    def check_remote(target_edgetpu=False):
        tflite_model_path = get_tflite_model_path(target_edgetpu)

        # inference via tflite interpreter python apis
        interpreter = init_interpreter(tflite_model_path, target_edgetpu)
        interpreter.allocate_tensors()
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()

        input_shape = input_details[0]['shape']
        tflite_input = np.array(np.random.random_sample(input_shape), dtype=np.uint8)
        interpreter.set_tensor(input_details[0]['index'], tflite_input)
        interpreter.invoke()
        tflite_output = interpreter.get_tensor(output_details[0]['index'])

        # inference via remote tvm tflite runtime
        server = rpc.Server("localhost")
        remote = rpc.connect(server.host, server.port)
        ctx = remote.cpu(0)

        with open(tflite_model_path, 'rb') as model_fin:
            runtime = tflite_runtime.create(model_fin.read(), ctx)
            runtime.set_input(0, tvm.nd.array(tflite_input, ctx))
            runtime.invoke()
            out = runtime.get_output(0)
            np.testing.assert_equal(out.asnumpy(), tflite_output)

    # Target CPU on coral board
    check_remote()
    # Target EdgeTPU on coral board
    check_remote(target_edgetpu=True)

if __name__ == "__main__":
    # skipped_test_tflite_runtime()
    pass