test_topi_conv2d_transpose_nchw.py 4.56 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19
"""Test code for transposed convolution."""
import numpy as np
import tvm
20
from tvm import te
21
import topi
22
import topi.testing
23 24 25
from tvm.contrib.pickle_memoize import memoize
from topi.util import get_const_tuple

26
from common import get_all_backend
27

28 29 30 31 32 33 34 35
_conv2d_transpose_nchw_implement = {
    "generic": (topi.nn.conv2d_transpose_nchw, topi.generic.schedule_conv2d_transpose_nchw),
    "cpu": (topi.x86.conv2d_transpose_nchw, topi.x86.schedule_conv2d_transpose_nchw),
    "arm_cpu": (topi.arm_cpu.conv2d_transpose_nchw, topi.arm_cpu.schedule_conv2d_transpose_nchw),
    "gpu": (topi.cuda.conv2d_transpose_nchw, topi.cuda.schedule_conv2d_transpose_nchw),
    "hls": (topi.nn.conv2d_transpose_nchw, topi.hls.schedule_conv2d_transpose_nchw),
}

36
def verify_conv2d_transpose_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding):
37 38 39 40
    in_height, in_width = in_size
    kernel_height, kernel_width = kernel
    stride_height, stride_width = stride
    pad_top, pad_left, pad_bottom, pad_right = padding
41

42 43
    A = te.placeholder((batch, in_channel, in_height, in_width), name='A')
    W = te.placeholder((in_channel, num_filter, kernel_height, kernel_width), name='W')
44 45 46 47 48 49 50 51 52

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_transpose.verify_conv2d_transpose_nchw")
    def get_ref_data():
        a_np = np.random.uniform(size=a_shape).astype(dtype)
        w_np = np.random.uniform(size=w_shape).astype(dtype)
53
        b_np = topi.testing.conv2d_transpose_nchw_python(a_np, w_np, stride, padding)
54 55 56 57 58 59
        c_np = np.maximum(b_np, 0)
        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
60 61
        ctx = tvm.context(device, 0)
        if not ctx.exist:
62 63
            print("Skip because %s is not enabled" % device)
            return
64
        print("Running on target: %s" % device)
65
        with tvm.target.create(device):
66 67 68 69 70
            fcompute, fschedule = topi.testing.dispatch(device, _conv2d_transpose_nchw_implement)
            B = fcompute(A, W,
                         [stride_height, stride_width],
                         [pad_top, pad_left, pad_bottom, pad_right],
                         A.dtype)
71
            C = topi.nn.relu(B)
72 73
            s1 = fschedule([B])
            s2 = fschedule([C])
74 75 76 77 78
        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)

79 80 81 82
        func1 = tvm.build(s1, [A, W, B], device)
        func2 = tvm.build(s2, [A, W, C], device)
        func1(a, w, b)
        func2(a, w, c)
83 84
        tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)
85
    for device in get_all_backend():
86 87 88 89
        check_device(device)


def test_conv2d_transpose_nchw():
90 91 92 93 94 95 96 97 98 99
    verify_conv2d_transpose_nchw(1, 3, (224, 224),  1, (1, 1), (1, 1), (0, 0, 0, 0))
    verify_conv2d_transpose_nchw(1, 3, (224, 224),  32, (3, 3), (1, 1), (0, 0, 0, 0))
    verify_conv2d_transpose_nchw(1, 3, (224, 224),  32, (3, 3), (3, 3), (0, 0, 0, 0))
    verify_conv2d_transpose_nchw(1, 3, (224, 224),  32, (3, 3), (1, 1), (0, 0, 0, 0))
    verify_conv2d_transpose_nchw(1, 3, (224, 224),  32, (3, 3), (2, 2), (1, 1, 1, 1))
    verify_conv2d_transpose_nchw(1, 3, (224, 224),  32, (2, 2), (2, 2), (0, 0, 0, 0))
    verify_conv2d_transpose_nchw(1, 32, (32, 32), 128, (5, 5), (1, 1), (0, 0, 0, 0))
    verify_conv2d_transpose_nchw(1, 32, (32, 32), 128, (5, 5), (2, 2), (1, 1, 1, 1))
    verify_conv2d_transpose_nchw(16, 32, (8192, 1), 8, (31, 1), (2, 1), (14, 0, 15, 0))
    verify_conv2d_transpose_nchw(16, 512, (8, 1), 128, (31, 1), (2, 1), (14, 0, 15, 0))
100 101 102

if __name__ == "__main__":
    test_conv2d_transpose_nchw()