test_topi_sparse.py 9.17 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
"""Test code for sparse operator"""
import numpy as np
import tvm
import topi
import topi.testing
from topi.util import get_const_tuple
import tvm.contrib.sparse as tvmsp
from collections import namedtuple
import time

def verify_dynamic_csrmv(batch, in_dim, out_dim, use_bias=True):
    nr, nc, n = tvm.var("nr"), tvm.var("nc"), tvm.var("n")
    dtype = 'float32'
    A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, dtype=dtype, name='A')
    B = tvm.placeholder((in_dim, 1), name='B')
    C = tvm.placeholder((nr,), name='C')
    D = topi.sparse.csrmv(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)
    dtype = A.dtype

    # get the test data
    def get_ref_data():
        a_np = np.maximum(np.random.uniform(size=(batch, in_dim)).astype(dtype)-0.5, 0.)
        b_np = np.random.uniform(size=(in_dim, 1)).astype(dtype)-0.5
        c_np = np.random.uniform(size=(batch, )).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np) + c_np.reshape((batch, 1))
        else:
            d_np = np.dot(a_np, b_np)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvmsp.array(a_np, ctx)
        _nr, _nc, _n = a.shape[0], a.shape[1], a.data.shape[0]
        assert a.shape[0] == a.indptr.shape[0]-1
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros((_nr, 1), dtype=dtype), ctx)
        assert a.data.dtype == A.data.dtype
        assert a.indices.dtype == A.indices.dtype
        assert a.indptr.dtype == A.indptr.dtype
        f = tvm.build(s, [nr, A.data, A.indices, A.indptr, B, C, D], device, name="csrmv")
        f(_nr, a.data, a.indices, a.indptr, b, c, d)
66
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    for device in ["llvm"]:
        check_device(device)

def verify_dynamic_csrmm(batch, in_dim, out_dim, use_bias=True):
    nr, nc, n = tvm.var("nr"), tvm.var("nc"), tvm.var("n")
    dtype = 'float32'
    A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, dtype=dtype, name='A')
    B = tvm.placeholder((in_dim, out_dim), name='B')
    C = tvm.placeholder((nr,), name='C')
    D = topi.sparse.csrmm(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)
    dtype = A.dtype

    # get the test data
    def get_ref_data():
        a_np = np.maximum(np.random.uniform(size=(batch, in_dim)).astype(dtype)-0.5, 0.)
        b_np = np.random.uniform(size=(in_dim, out_dim)).astype(dtype)-0.5
        c_np = np.random.uniform(size=(batch, )).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np) + c_np.reshape((batch, 1))
        else:
            d_np = np.dot(a_np, b_np)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvmsp.array(a_np, ctx)
        _nr, _nc, _n = a.shape[0], a.shape[1], a.data.shape[0]
        assert a.shape[0] == a.indptr.shape[0]-1
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros((_nr, out_dim), dtype=dtype), ctx)
        f = tvm.build(s, [nr, A.data, A.indices, A.indptr, B, C, D], device, name="csrmm")

        f(_nr, a.data, a.indices, a.indptr, b, c, d)
108
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-2, atol=1e-2)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    for device in ["llvm"]:
        check_device(device)

def verify_dense_si(batch, in_dim, out_dim, use_bias=True, dtype='float32'):
    nonzeros = tvm.var('nonzeros')
    A = tvmsp.placeholder(shape=(batch, in_dim), nonzeros=nonzeros, dtype=dtype, name='A')
    B = tvm.placeholder((out_dim, in_dim), dtype=dtype, name='B')
    C = tvm.placeholder((out_dim,), dtype=dtype, name='C')
    D = topi.sparse.dense(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)

    # get the test data
    def get_ref_data():
        mag = 10.
        a_np = np.maximum(mag*(np.random.uniform(size=(batch, in_dim)).astype('float32')-0.5), 0.).astype(dtype)
        b_np = (mag*(np.random.uniform(size=(out_dim, in_dim)).astype('float32')-.5)).astype(dtype)
        c_np = (mag*(np.random.uniform(size=(out_dim,)).astype('float32')-.5)).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np.T) + c_np
        else:
            d_np = np.dot(a_np, b_np.T)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvmsp.array(a_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros(get_const_tuple(D.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A.data, A.indices, A.indptr, B, C, D], device, name="dense")
        f(a.data, a.indices, a.indptr, b, c, d)
146
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    check_device('llvm')

def verify_dense_sw(batch, in_dim, out_dim, use_bias=True, dtype='float32'):
    nonzeros = tvm.var('nonzeros')
    A = tvm.placeholder((batch, in_dim), dtype=dtype, name='A')
    B = tvmsp.placeholder(shape=(out_dim, in_dim), nonzeros=nonzeros, dtype=dtype, name='B')
    C = tvm.placeholder((out_dim,), dtype=dtype, name='C')
    D = topi.sparse.dense(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)

    # get the test data
    def get_ref_data():
        mag = 10.
        a_np = (mag*(np.random.uniform(size=(batch, in_dim)).astype('float32')-.5)).astype(dtype)
        b_np = np.maximum(mag*(np.random.uniform(size=(out_dim, in_dim)).astype('float32')-0.5), 0.).astype(dtype)
        c_np = (mag*(np.random.uniform(size=(out_dim,)).astype('float32')-.5)).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np.T) + c_np
        else:
            d_np = np.dot(a_np, b_np.T)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvm.nd.array(a_np, ctx)
        b = tvmsp.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros(get_const_tuple(D.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B.data, B.indices, B.indptr, C, D], device, name="dense")
        f(a, b.data, b.indices, b.indptr, c, d)
183
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    check_device('llvm')

def test_csrmv():
    verify_dynamic_csrmv(batch=5, in_dim=7, out_dim=1, use_bias=False)
    verify_dynamic_csrmv(batch=5, in_dim=7, out_dim=1, use_bias=True)

def test_csrmm():
    M, K, N = 5, 7, 2
    verify_dynamic_csrmm(batch=M, in_dim=K, out_dim=N, use_bias=False)
    verify_dynamic_csrmm(batch=M, in_dim=K, out_dim=N, use_bias=True)

def test_dense_si():
    M, K, N = 3, 5, 2
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='float32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='float32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int16')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int16')

def test_dense_sw():
    M, K, N = 3, 5, 2
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='float32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='float32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int16')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int16')

def test_dense():
    test_dense_si()
    test_dense_sw()

if __name__ == "__main__":
    test_csrmv()
    test_csrmm()
    test_dense()