test_topi_matmul.py 3.04 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
import numpy as np
import tvm
import topi
from topi.util import get_const_tuple

def with_tvm(lam, *args):
    """ Take numpy arrays as args, convert them to TVM tensors and call `lam`.
    Result of lambda is converted back to numpy array and returned.
    """
    ctx = tvm.cpu(0)
    pls = []     # placeholders
    vals_nd = [] # initial values
    for i,arg in enumerate(args):
        pls.append(tvm.placeholder(arg.shape, name='pl'+str(i)))
        vals_nd.append(tvm.nd.array(arg, ctx))

    out = lam(*pls)
    out_nd = tvm.nd.array(np.zeros(get_const_tuple(out.shape), dtype=out.dtype), ctx)
    s = tvm.create_schedule([out.op])
    m = tvm.build(s, pls + [out], "llvm")
    m(*(vals_nd+[out_nd]))
    return out_nd.asnumpy()

def verify_matmul(sa, sb, transp_a, transp_b):
    a = np.random.uniform(low=-1.0, high=1.0, size=sa).astype(np.float32)
    b = np.random.uniform(low=-1.0, high=1.0, size=sb).astype(np.float32)
    c1 = np.matmul(np.transpose(a) if transp_a else a,
                   np.transpose(b) if transp_b else b)
    c2 = with_tvm(lambda A,B: topi.matmul(A,B,transp_a,transp_b), a,b)
46
    tvm.testing.assert_allclose(c1, c2, rtol=1e-5, atol=1e-5)
47 48 49 50 51 52 53 54 55 56 57

def test_matmul():
    verify_matmul((1,1),(1,1),False,False)
    verify_matmul((1,1),(1,1),True,True)
    verify_matmul((2,2),(2,2),False,False)
    verify_matmul((2,2),(2,2),True,True)
    verify_matmul((2,3),(3,5),False,False)
    verify_matmul((5,3),(3,2),False,False)
    verify_matmul((3,5),(3,2),True,False)
    verify_matmul((3,5),(2,3),True,True)

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
def verify_tensordot(sa, sb, axes):
    a = np.random.uniform(low=-1.0, high=1.0, size=sa).astype(np.float32)
    b = np.random.uniform(low=-1.0, high=1.0, size=sb).astype(np.float32)
    c1 = np.tensordot(a, b, axes)
    c2 = with_tvm(lambda A, B: topi.tensordot(A, B, axes), a, b)
    tvm.testing.assert_allclose(c1, c2, rtol=1e-5, atol=1e-5)

def test_tensordot():
    verify_tensordot((3), (3), 0)
    verify_tensordot((2, 3), (3, 5), 1)
    verify_tensordot((2, 2, 3), (2, 3, 5), 2)
    verify_tensordot((2, 2, 3, 4), (2, 3, 4, 5), 3)
    verify_tensordot((3, 2, 2), (2, 3, 5), (1, 0))
    verify_tensordot((3, 2, 2), (2, 3, 5), ((1, 0), (0, 1)))
    verify_tensordot((4, 3, 2, 2), (2, 4, 3, 5), ((1, 2, 0), (2, 0, 1)))

74 75
if __name__ == "__main__":
    test_matmul()
76
    test_tensordot()
77