dcgan.py 4.18 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# pylint: disable=unused-argument
"""
Net of the generator of DCGAN

Adopted from:
https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py

Reference:
Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional generative adversarial networks."
arXiv preprint arXiv:1511.06434 (2015).
"""
from tvm import relay
from . import layers
from .init import create_workload

def deconv2d(data, ishape, oshape, kshape, name, stride=(2, 2)):
    """a deconv layer that enlarges the feature map"""
    target_shape = (oshape[-2], oshape[-1])

    pad_y = (kshape[0] - 1) // 2
    pad_x = (kshape[1] - 1) // 2
    adj_y = (target_shape[0] + 2 * pad_y - kshape[0]) % stride[0]
    adj_x = (target_shape[1] + 2 * pad_x - kshape[1]) % stride[1]

    net = layers.conv2d_transpose(data,
                                  kernel_size=kshape,
                                  strides=stride,
                                  channels=oshape[0],
                                  padding=(pad_y, pad_x),
                                  output_padding=(adj_y, adj_x),
                                  name=name)
    return net

def deconv2d_bn_relu(data, prefix, **kwargs):
    """a block of deconv + batch norm + relu"""
    eps = 1e-5 + 1e-12
    net = deconv2d(data, name="%s_deconv" % prefix, **kwargs)
55
    net = layers.batch_norm_infer(net, epsilon=eps, scale=False, name="%s_batch_norm" % prefix)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    net = relay.nn.relu(net)
    return net

def get_net(batch_size, random_len=100, oshape=(3, 64, 64), ngf=128, code=None, dtype="float32"):
    """get net of dcgan generator"""
    assert oshape[-1] == 64, "Only support 64x64 image"
    assert oshape[-2] == 64, "Only support 64x64 image"

    code = relay.var("data", dtype=dtype, shape=(batch_size, random_len)) if code is None else code
    dense_weight = relay.var("dense_weight")
    dense = relay.nn.dense(code, weight=dense_weight, units=4*4*ngf*8)
    relu = relay.nn.relu(dense)
    # 4 x 4
    reshape = relay.reshape(relu, newshape=(-1, ngf * 8, 4, 4))
    # 8 x 8
    dc8 = deconv2d_bn_relu(
        reshape, ishape=(ngf * 8, 4, 4), oshape=(ngf * 4, 8, 8), kshape=(4, 4), prefix="g2")
    # 16x16
    dc16 = deconv2d_bn_relu(
        dc8, ishape=(ngf * 4, 8, 8), oshape=(ngf * 2, 16, 16), kshape=(4, 4), prefix="g3")
    # 32x32
    dc32 = deconv2d_bn_relu(
        dc16, ishape=(ngf * 2, 16, 16), oshape=(ngf, 32, 32), kshape=(4, 4), prefix="g4")
    # 64x64
    dc64 = deconv2d(
        dc32, ishape=(ngf, 32, 32), oshape=oshape[-3:], kshape=(4, 4), name="g5_deconv")
    tanh = relay.tanh(dc64)

Zhi committed
84
    args = relay.analysis.free_vars(tanh)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    return relay.Function(args, tanh)


def get_workload(batch_size, oshape=(3, 64, 64), ngf=128, random_len=100, dtype="float32"):
    """Get benchmark workload for a DCGAN generator

    Parameters
    ----------
    batch_size : int
        The batch size used in the model
    oshape : tuple, optional
        The shape of output image, layout="CHW"
    ngf: int, optional
        The number of final feature maps in the generator
    random_len : int, optional
        The length of random input
    dtype : str, optional
        The data type

    Returns
    -------
106 107
    mod : tvm.relay.Module
        The relay module that contains a DCGAN network.
108 109 110 111 112
    params : dict of str to NDArray
        The parameters.
    """
    net = get_net(batch_size, random_len, oshape=oshape, ngf=ngf, dtype=dtype)
    return create_workload(net)