memory_alloc.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=no-else-return,invalid-name,len-as-condition
"""
A pass for manifesting explicit memory allocations.
"""
import numpy as np
from .expr_functor import ExprMutator
from .scope_builder import ScopeBuilder
from . import transform
from . import op, ty, expr
from .. import TVMType, register_func
from .backend import compile_engine


def is_primitive(call):
31 32
    return hasattr(call.op, 'attrs') and hasattr(call.op.attrs, 'Primitive') and \
        int(call.op.attrs.Primitive) == 1
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

# TODO(@jroesch): port to c++ and unify with existing code
class LinearizeRetType:
    """A linear view of a Relay type, handles a linear order
       for nested tuples, and tensor types.
    """

    def __init__(self, typ):
        """Initialize the linearizer."""
        self.typ = typ

    def unpack(self):
        """Return the linear representation of the type."""
        def _unpack(typ, out):
            # TODO(@jroesch): replace with new flattening pass
            if isinstance(typ, ty.TensorType):
                out.append(typ)
            elif isinstance(typ, ty.TupleType):
                for field_ty in typ.fields:
                    _unpack(field_ty, out)
            else:
54
                raise Exception("unsupported Relay type: {0}".format(typ))
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

        output = []
        _unpack(self.typ, output)
        return output

    def pack(self, seq):
        """Repack a linear type as a nested type."""
        def _pack(value, typ, out):
            if isinstance(typ, ty.TensorType):
                out.append(value)
            elif isinstance(typ, ty.TupleType):
                tuple_out = []
                for i, field_ty in enumerate(typ.fields):
                    _pack(value[i], field_ty, tuple_out)
                out.append(expr.Tuple(tuple_out))
            else:
71
                raise Exception("unsupported Relay type: {0}".format(typ))
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        if len(seq) == 1:
            return seq[0]
        else:
            out = []
            _pack(seq, self.typ, out)
            assert len(out) == 1, "must return fully packed type"
            return out[0]


class ManifestAllocPass(ExprMutator):
    """A pass for explictly manifesting all memory allocations in Relay."""

    def __init__(self, target_host):
        self.invoke_tvm = op.memory.invoke_tvm_op
        self.alloc_storage = op.memory.alloc_storage
        self.alloc_tensor = op.memory.alloc_tensor
        self.shape_func = op.memory.shape_func
        self.scopes = [ScopeBuilder()]
        self.target_host = target_host
        self.compute_dtype = "int64"
        super().__init__()

    def current_scope(self):
        return self.scopes[-1]

    def shape_of(self, e):
        return op.shape_of(e, self.compute_dtype)

    def visit_tuple(self, tup):
        scope = self.current_scope()
        new_fields = []
        for field in tup.fields:
            field = self.visit(field)
            if isinstance(field, expr.Constant):
                field = scope.let('const', field)
            new_fields.append(field)
        return expr.Tuple(new_fields)

    def compute_alignment(self, dtype):
        dtype = TVMType(dtype)
        align = (dtype.bits // 8) * dtype.lanes
        # MAGIC CONSTANT FROM device_api.h
        if align < 64:
            align = 64

        return expr.const(align, dtype="int64")

    def compute_storage_in_relay(self, shape, dtype):
        dtype = TVMType(dtype)
        els = op.prod(shape)
        num = expr.const(dtype.bits * dtype.lanes, self.compute_dtype)
        num = num + expr.const(7, self.compute_dtype)
        div = expr.const(8, self.compute_dtype)
        return els * (num / div)

    def compute_storage(self, tensor_type):
        dtype = TVMType(tensor_type.dtype)
        shape = [int(sh) for sh in tensor_type.shape]
        size = 1
        for sh in shape:
            size *= sh
        size *= (dtype.bits * dtype.lanes + 7) // 8
        return expr.const(size, dtype=self.compute_dtype)

    def make_static_allocation(self, scope, tensor_type, i):
        """Allocate a tensor with a statically known shape."""
        shape = [int(sh) for sh in tensor_type.shape]
        if len(shape) == 0:
            shape = expr.const(np.array([]).astype(
                self.compute_dtype), dtype=self.compute_dtype)
        else:
            shape = expr.const(np.array(shape), dtype=self.compute_dtype)
        size = self.compute_storage(tensor_type)
        alignment = self.compute_alignment(tensor_type.dtype)
        dtype = tensor_type.dtype
148
        sto = scope.let("storage_{0}".format(i), self.alloc_storage(
149 150 151
            size, alignment, dtype))
        # TODO(@jroesch): There is a bug with typing based on the constant shape.
        tensor = self.alloc_tensor(sto, shape, dtype, tensor_type.shape)
152
        return scope.let("tensor_{0}".format(i), tensor)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

    def visit_let(self, let):
        scope = ScopeBuilder()

        self.scopes.append(scope)
        while isinstance(let, expr.Let):
            new_val = self.visit(let.value)
            scope.let(let.var, new_val)
            let = let.body

        new_body = self.visit(let)
        scope.ret(new_body)
        self.scopes.pop()

        return scope.get()

    def visit_call(self, call):
        if is_primitive(call):
            # Because we are in ANF we do not need to visit the arguments.
            scope = self.current_scope()
            new_args = [self.visit(arg) for arg in call.args]
            ins = expr.Tuple(new_args)
            ret_type = call.checked_type

            is_dynamic = ret_type.is_dynamic()
            # TODO(@jroesch): restore this code, more complex then it seems
            # for arg in call.args:
            #     is_dynamic = is_dynamic or arg.checked_type.is_dynamic()

            if is_dynamic:
                assert isinstance(ret_type, ty.TensorType)
                shape_func_ins = []
                engine = compile_engine.get()
                cfunc = engine.lower_shape_func(call.op, self.target_host)
                input_states = cfunc.shape_func_param_states

                is_inputs = []
                for i, (arg, state) in enumerate(zip(new_args, input_states)):
                    state = int(state)
                    # Pass Shapes
                    if state == 2:
                        sh_of = self.visit(self.shape_of(arg))
                        shape_func_ins.append(
196
                            scope.let("in_shape_{0}".format(i), sh_of))
197 198 199 200 201
                        is_inputs.append(0)
                    # Pass Inputs
                    elif state == 1:
                        new_arg = self.visit(arg)
                        shape_func_ins.append(
202
                            scope.let("in_shape_{0}".format(i), new_arg))
203 204 205 206 207 208 209 210 211
                        is_inputs.append(1)
                    # TODO(@jroesch): handle 3rd case
                    else:
                        raise Exception("unsupported shape function input state")

                out_shapes = []
                for i, out in enumerate(cfunc.outputs):
                    tt = ty.TensorType(out.shape, out.dtype)
                    alloc = self.make_static_allocation(scope, tt, i)
212
                    alloc = scope.let("shape_func_out_{0}".format(i), alloc)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                    out_shapes.append(alloc)

                shape_call = self.shape_func(
                    call.op,
                    expr.Tuple(shape_func_ins),
                    expr.Tuple(out_shapes), is_inputs)

                scope.let("shape_func", shape_call)

                out_types = []
                out_types.append(call.checked_type)

                storages = []
                for out_shape, out_type in zip(out_shapes, out_types):
                    size = self.compute_storage_in_relay(
                        out_shape, out_type.dtype)
                    alignment = self.compute_alignment(out_type.dtype)
230
                    sto = scope.let("storage_{i}".format(i=i), self.alloc_storage(
231 232 233 234 235 236 237 238 239 240 241
                        size, alignment, out_type.dtype))
                    storages.append(sto)

                outs = []
                sh_ty_storage = zip(out_shapes, out_types, storages)
                for i, (out_shape, out_type, storage) in enumerate(sh_ty_storage):
                    alloc = self.alloc_tensor(
                        storage,
                        out_shape,
                        out_type.dtype,
                        out_type.shape)
242
                    alloc = scope.let("out_{i}".format(i=i), alloc)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
                    outs.append(alloc)

                invoke = self.invoke_tvm(call.op, ins, expr.Tuple(outs))
                scope.let("", invoke)
                return outs[0]
            else:
                view = LinearizeRetType(ret_type)
                out_tys = view.unpack()

                outs = []
                for i, out_ty in enumerate(out_tys):
                    out = self.make_static_allocation(scope, out_ty, i)
                    outs.append(out)

                output = expr.Tuple(outs)
                invoke = self.invoke_tvm(call.op, ins, output)
                scope.let("", invoke)
                return view.pack(output)
        else:
            return super().visit_call(call)


@transform.function_pass(opt_level=0)
class ManifestAlloc:
    """The explicit pass wrapper around ManifestAlloc."""
    def __init__(self, target_host):
        self.target_host = target_host

    def transform_function(self, func, mod, _):
        # TODO(@jroesch): Is there a way to do one shot initilization?
        # can we have def pass_init?
        mod.import_from_std("core.rly")
        ea = ManifestAllocPass(self.target_host)
        func = ea.visit(func)
        return func


register_func("relay.transform.ManifestAlloc", ManifestAlloc)