test_conv_int8_intel.py 6.79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22
#pylint: disable-msg=too-many-arguments, too-many-locals, assignment-from-no-return
""" Conv Int8 functional and performance testing"""
import sys
import logging
import numpy as np
import tvm
23
from tvm import te
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
import topi

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
LOGGER = logging.getLogger('test_conv_int8_intel')
LOGGER.disabled = False

# All the WORKLOADS from Resnet except first layer
# Workload is ['height', 'width', 'in_filter', 'out_filter',
#              'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
WORKLOADS = [(56, 56, 64, 64, 3, 3, 1, 1, 1, 1),
             (56, 56, 64, 64, 1, 1, 0, 0, 1, 1),
             (56, 56, 64, 128, 3, 3, 1, 1, 2, 2),
             (56, 56, 64, 128, 1, 1, 0, 0, 2, 2),
             (28, 28, 128, 128, 3, 3, 1, 1, 1, 1),
             (28, 28, 128, 256, 3, 3, 1, 1, 2, 2),
             (28, 28, 128, 256, 1, 1, 0, 0, 2, 2),
             (14, 14, 256, 256, 3, 3, 1, 1, 1, 1),
             (14, 14, 256, 512, 3, 3, 1, 1, 2, 2),
             (14, 14, 256, 512, 1, 1, 0, 0, 2, 2),
             (7, 7, 512, 512, 3, 3, 1, 1, 1, 1),
             (56, 56, 64, 256, 1, 1, 0, 0, 1, 1),
             (56, 56, 256, 64, 1, 1, 0, 0, 1, 1),
             (56, 56, 256, 128, 1, 1, 0, 0, 2, 2),
             (28, 28, 128, 512, 1, 1, 0, 0, 1, 1),
             (56, 56, 256, 512, 1, 1, 0, 0, 2, 2),
             (28, 28, 512, 128, 1, 1, 0, 0, 1, 1),
             (28, 28, 512, 256, 1, 1, 0, 0, 2, 2),
             (14, 14, 256, 1024, 1, 1, 0, 0, 1, 1),
             (28, 28, 512, 1024, 1, 1, 0, 0, 2, 2),
             (14, 14, 1024, 256, 1, 1, 0, 0, 1, 1),
             (14, 14, 1024, 512, 1, 1, 0, 0, 2, 2),
             (7, 7, 512, 2048, 1, 1, 0, 0, 1, 1),
             (14, 14, 1024, 2048, 1, 1, 0, 0, 2, 2),
             (7, 7, 2048, 512, 1, 1, 0, 0, 1, 1)
            ]


TARGET_NAME = 'llvm -mcpu=skylake-avx512'
NUM_VEC_LANES = 16
CTX = tvm.context(TARGET_NAME, 0)

def get_shape(im_height, im_width, in_filter, out_filter, k_h, k_w, hpad, wpad,
              hstride, wstride, out_dtype):
    """
    Finds out the shape of all data structures
    """
    ## Find shapes
    data_shape = (1, in_filter//NUM_VEC_LANES, im_height, im_width, NUM_VEC_LANES)

    if out_dtype == 'int32':
74 75
        kernel_shape = (out_filter//NUM_VEC_LANES, in_filter//NUM_VEC_LANES, k_h, k_w,
                        NUM_VEC_LANES//4, NUM_VEC_LANES, 4)
76
    elif out_dtype == 'float32':
77 78
        kernel_shape = (out_filter//NUM_VEC_LANES, in_filter//NUM_VEC_LANES, k_h, k_w,
                        NUM_VEC_LANES, NUM_VEC_LANES)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    out_height = (im_height + 2 * hpad - k_h) // hstride + 1
    out_width = (im_width + 2 * wpad - k_w) // wstride + 1
    o_shape = (1, out_filter//NUM_VEC_LANES, out_height, out_width, NUM_VEC_LANES)
    return (data_shape, kernel_shape, o_shape)



def run_inference(data_dtype, kernel_dtype, out_dtype, im_height, im_width, in_filter,
                  out_filter, k_h, k_w, hpad, wpad, hstride, wstride):
    """
    Runs the inference and checks the functional correctness between
    compute and schedule outputs
    """
    (data_shape, kernel_shape, o_shape) = get_shape(im_height, im_width, in_filter,
                                                    out_filter, k_h, k_w, hpad, wpad,
                                                    hstride, wstride, out_dtype)

    # Create TVM placeholders
97 98
    data = te.placeholder(data_shape, name='data', dtype=data_dtype)
    kernel = te.placeholder(kernel_shape, name='kernel', dtype=kernel_dtype)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    # Create the numpy arrays to be used for executing conv models
    if data_dtype == 'float32':
        data_array = tvm.nd.array(np.random.rand(*data_shape).astype(dtype=data_dtype), CTX)
        kernel_array = tvm.nd.array(np.random.rand(*kernel_shape).astype(dtype=kernel_dtype), CTX)
    else:
        data_array = tvm.nd.array(np.random.randint(100, size=data_shape).astype(data_dtype))
        kernel_array = tvm.nd.array(np.random.randint(100, size=kernel_shape).astype(kernel_dtype))

    # c_orig will be used for declaration ouptut
    # c_sch will be used for scheduled computation output
    c_orig = tvm.nd.array(np.zeros(o_shape, dtype=out_dtype), CTX)
    c_sch = tvm.nd.array(np.zeros(o_shape, dtype=out_dtype), CTX)


    with tvm.target.create(TARGET_NAME):
115
        conv = topi.nn.conv2d_NCHWc(data, kernel, stride=hstride,
116 117
                                    padding=hpad, dilation=(1, 1),
                                    layout='NCHWc', out_layout='NCHWc', out_dtype=out_dtype)
118
        out = topi.nn.relu(conv)
119
        sch = te.create_schedule(out.op)
120 121 122 123 124
        func = tvm.build(sch, [data, kernel, out], target=TARGET_NAME, name='out')
        func(data_array, kernel_array, c_orig)
        LOGGER.debug(tvm.lower(sch, [data, kernel], simple_mode=True))

        # Generate and run the optimized schedule
125
        sconv = topi.generic.nn.schedule_conv2d_NCHWc(outs=[out])
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        func = tvm.build(sconv, [data, kernel, out], target=TARGET_NAME, name='conv')
        func(data_array, kernel_array, c_sch)

        # Functional check
        if data_dtype == 'uint8':
            np.testing.assert_equal(c_orig.asnumpy(), c_sch.asnumpy())
        else:
            assert np.allclose(c_orig.asnumpy(), c_sch.asnumpy())

        evaluator = func.time_evaluator(func.entry_name, CTX, number=1000)
        LOGGER.debug(tvm.lower(sconv, [data, kernel], simple_mode=True))
        return evaluator(data_array, kernel_array, c_sch).mean

if __name__ == "__main__":
    LOGGER.info("Workload, Kernel_size, FP32_time, INT8_time, Speedup")
    SPEEDUP_ARRAY = []
    for i, wkl in enumerate(WORKLOADS):
        fp32_time = run_inference('float32', 'float32', 'float32', *wkl)
        int8_time = run_inference('uint8', 'int8', 'int32', *wkl)
        kernel_h = wkl[4]
        kernel_w = wkl[5]
        LOGGER.info("Workload#" + str(i) + ", " + str(kernel_h) + "x" + str(kernel_w) + ", "
                    + str(fp32_time) + ", " + str(int8_time) + ", " + str(fp32_time/int8_time))

        SPEEDUP_ARRAY.append(fp32_time/int8_time)
    LOGGER.info("Average speedup --> %s" % str(sum(SPEEDUP_ARRAY)/float(len(SPEEDUP_ARRAY))))