test_pass_mac_count.py 4.57 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17
"""Unit tests for MAC counter."""
18
import numpy as np
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
import tvm
from tvm import relay

def test_gemm():
    n = 512
    k = 1024
    m = 256
    dshape1 = (n, k)
    dshape2 = (m, k)
    data1 = relay.var("data1", shape=dshape1)
    data2 = relay.var("data2", shape=dshape2)
    gemm = relay.nn.dense(data1, data2)
    func = relay.Function([data1, data2],
                            relay.Tuple(tvm.convert([gemm])))
    func = relay.ir_pass.infer_type(func)
    compute_count = relay.ir_pass.get_total_mac_number(func)
    expect_count = n * m * k
    assert compute_count == expect_count

def test_conv():
    batch_size = 1
    input_channel = 3
    h = 224
    w = 224
    output_channel = 64
    kh = 7
    kw = 7
    h_padding = 1
    w_padding = 1
    oh = h + h_padding * 2 - kh + 1
    ow = w + w_padding * 2 - kw + 1
    dshape = (batch_size, input_channel, h, w)
    weight = relay.var("weight", shape=(output_channel, input_channel, kh, kw))
    data = relay.var("data", shape=dshape)
    conv2d = relay.nn.conv2d(
        data,
        weight,
        channels=output_channel,
        kernel_size=(kh, kw),
        padding=(1, 1))
    func = relay.Function([data, weight],
                            relay.Tuple(tvm.convert([conv2d])))
    func = relay.ir_pass.infer_type(func)
    compute_count = relay.ir_pass.get_total_mac_number(func)
    expect_count = batch_size * input_channel * oh * ow * output_channel * kh * kw
    assert compute_count == expect_count

def test_simple_network():
    batch_size = 1
    dshape = (batch_size, 64, 56, 56)
    weight_conv = relay.var("weight_conv", shape=(64, 64, 3, 3))
    data1 = relay.var("data1", shape=dshape)
    data2 = relay.var("data2", shape=dshape)
    weight_dense = relay.var("weight_dense", shape=(1, 56*56*64))

    conv2d_1 = relay.nn.conv2d(
        data1,
        weight_conv,
        channels=64,
        kernel_size=(3, 3),
        padding=(1, 1))
    conv2d_2 = relay.nn.conv2d(
        data2,
        weight_conv,
        channels=64,
        kernel_size=(3, 3),
        padding=(1, 1))
    add = relay.add(conv2d_1, conv2d_2)
    flattened = relay.nn.batch_flatten(add)
    dense_1 = relay.nn.dense(
        flattened,
        weight_dense)

    func = relay.Function([data1, data2, weight_conv, weight_dense],
                            relay.Tuple(tvm.convert([conv2d_1, conv2d_2,
                                                    dense_1, add, flattened])))
    func = relay.ir_pass.infer_type(func)
    # alter the CONV 2D data layout to test
    func = relay.ir_pass.alter_op_layout(func)
    func = relay.ir_pass.infer_type(func)
    compute_count = relay.ir_pass.get_total_mac_number(func)
    expect_count = 231411712
    assert compute_count == expect_count

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
def test_depthwise_conv2d():
    batch_size = 1
    dshape = (batch_size, 64, 56, 56)
    weight_conv = relay.var("weight_depthwiseconv", shape=(64, 1, 3, 3))
    data1 = relay.var("data1", shape=dshape)
    data2 = relay.var("data2", shape=dshape)
    depthwise_conv2d_1 = relay.nn.conv2d(
        data1,
        weight_conv,
        kernel_size=(3, 3),
        padding=(1, 1),
        groups=64)
    depthwise_conv2d_2 = relay.nn.conv2d(
        data2,
        weight_conv,
        kernel_size=(3, 3),
        padding=(1, 1),
        groups=64)
    add = relay.add(depthwise_conv2d_1, depthwise_conv2d_2)
    func = relay.Function([data1, data2, weight_conv],
                            relay.Tuple(tvm.convert([depthwise_conv2d_1,
                                                    depthwise_conv2d_2,
                                                    add])))
    func = relay.ir_pass.infer_type(func)
    compute_count = relay.ir_pass.get_total_mac_number(func)
    assert compute_count == 2 * np.prod(dshape) * 3*3

130 131 132 133
if __name__ == "__main__":
    test_conv()
    test_gemm()
    test_simple_network()
134
    test_depthwise_conv2d()