dcgan.py 3.23 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
# pylint: disable=unused-argument
"""
The MXNet symbol of DCGAN generator

Adopted from:
https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py

Reference:
Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional generative adversarial networks."
arXiv preprint arXiv:1511.06434 (2015).
"""

import mxnet as mx

def deconv2d(data, ishape, oshape, kshape, name, stride=(2, 2)):
    """a deconv layer that enlarges the feature map"""
    target_shape = (oshape[-2], oshape[-1])
    pad_y = (kshape[0] - 1) // 2
    pad_x = (kshape[1] - 1) // 2
    adj_y = (target_shape[0] + 2 * pad_y - kshape[0]) % stride[0]
    adj_x = (target_shape[1] + 2 * pad_x - kshape[1]) % stride[1]

    net = mx.sym.Deconvolution(data,
                               kernel=kshape,
                               stride=stride,
                               pad=(pad_y, pad_x),
                               adj=(adj_y, adj_x),
                               num_filter=oshape[0],
                               no_bias=True,
                               name=name)
    return net

def deconv2d_bn_relu(data, prefix, **kwargs):
    """a block of deconv + batch norm + relu"""
    eps = 1e-5 + 1e-12

    net = deconv2d(data, name="%s_deconv" % prefix, **kwargs)
    net = mx.sym.BatchNorm(net, eps=eps, name="%s_bn" % prefix)
    net = mx.sym.Activation(net, name="%s_act" % prefix, act_type='relu')
    return net

def get_symbol(oshape=(3, 64, 64), ngf=128, code=None):
    """get symbol of dcgan generator"""
    assert oshape[-1] == 64, "Only support 64x64 image"
    assert oshape[-2] == 64, "Only support 64x64 image"

    code = mx.sym.Variable("data") if code is None else code
    net = mx.sym.FullyConnected(code, name="g1", num_hidden=ngf*8*4*4, no_bias=True, flatten=False)
    net = mx.sym.Activation(net, act_type='relu')
    # 4 x 4
    net = mx.sym.reshape(net, shape=(-1, ngf * 8, 4, 4))
    # 8 x 8
    net = deconv2d_bn_relu(
        net, ishape=(ngf * 8, 4, 4), oshape=(ngf * 4, 8, 8), kshape=(4, 4), prefix="g2")
    # 16x16
    net = deconv2d_bn_relu(
        net, ishape=(ngf * 4, 8, 8), oshape=(ngf * 2, 16, 16), kshape=(4, 4), prefix="g3")
    # 32x32
    net = deconv2d_bn_relu(
        net, ishape=(ngf * 2, 16, 16), oshape=(ngf, 32, 32), kshape=(4, 4), prefix="g4")
    # 64x64
    net = deconv2d(
        net, ishape=(ngf, 32, 32), oshape=oshape[-3:], kshape=(4, 4), name="g5_deconv")
    net = mx.sym.Activation(net, act_type='tanh')
    return net