test_topi_conv2d_int8.py 9.95 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20
"""Example code to do convolution."""

import numpy as np
import tvm
21
from tvm import te
22 23 24 25 26
from tvm import autotvm
from tvm.autotvm.task.space import FallbackConfigEntity
import topi
import topi.testing
from tvm.contrib.pickle_memoize import memoize
27
from topi.nn.util import get_pad_tuple
28 29
from topi.util import get_const_tuple

30
from common import get_all_backend, Int8Fallback
31 32 33 34 35

oc_block_factor = 4


def verify_conv2d_NCHWc_int8(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False):
36 37 38
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
39 40 41

    in_height = in_width = in_size

42 43 44
    A = te.placeholder((batch, in_channel, in_height, in_width), name='A', dtype='int8')
    W = te.placeholder((num_filter, in_channel, kernel, kernel), name='W', dtype='int8')
    bias = te.placeholder((num_filter // oc_block_factor, 1, 1, oc_block_factor), name='bias',
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                            dtype='int8')

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    bias_shape = get_const_tuple(bias.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_int8.verify_conv2d_nchw")
    def get_ref_data():
        a_np = np.random.randint(low=-128, high=127, size=a_shape).astype(dtype)
        w_np = np.random.randint(low=-128, high=128, size=w_shape).astype(dtype)
        b_np = np.random.uniform(size=bias_shape).astype(dtype)
        dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation))
        c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding).astype(dtype)

        # convert to NCHWc
        _, _, out_height, out_width = c_np.shape
        c_np = c_np.reshape((batch, num_filter // oc_block_factor, oc_block_factor, \
                out_height, out_width)).transpose(0, 1, 3, 4, 2)

        if add_bias:
            b_np = np.random.uniform(size=bias_shape).astype(dtype)
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)

        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        if device == "cuda" and not tvm.contrib.nvcc.have_int8(ctx.compute_version):
            print("Skip because int8 intrinsics are not available")
            return

        print("Running on target: %s" % device)
        with tvm.target.create(device):
86 87
            C = topi.cuda.conv2d_NCHWc_int8(A, W, (stride, stride), padding, (dilation, dilation),
                                            'NCHW', dtype)
88 89 90 91
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
92
            s = topi.cuda.schedule_conv2d_NCHWc_int8([C])
93 94 95 96 97 98

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
        if add_bias:
99 100
            tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
            func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
101 102
            func(a, w, b, c)
        else:
103
            func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation))
104
            func(a, w, c)
105
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)
106 107 108 109 110 111

    for device in ["cuda"]:
        check_device(device)


def test_conv2d_nchw():
112
    with Int8Fallback():
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        # ResNet18 workloads where channels in / out are multiple of oc_block_factor
        verify_conv2d_NCHWc_int8(1,  64,  56,  64, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1,  64,  56,  64, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  64,  56, 128, 3, 2, 1)
        verify_conv2d_NCHWc_int8(1,  64,  56, 128, 1, 2, 0)
        verify_conv2d_NCHWc_int8(1, 128,  28, 128, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1, 128,  28, 256, 3, 2, 1)
        verify_conv2d_NCHWc_int8(1, 128,  28, 256, 1, 2, 0)
        verify_conv2d_NCHWc_int8(1, 256,  14, 256, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1, 256,  14, 512, 3, 2, 1)
        verify_conv2d_NCHWc_int8(1, 256,  14, 512, 1, 2, 0)
        verify_conv2d_NCHWc_int8(1, 512,   7, 512, 3, 1, 1)

        # bias, relu
        verify_conv2d_NCHWc_int8(1, 64, 56, 64, 3, 1, 1, add_relu=True)
        verify_conv2d_NCHWc_int8(1, 64, 56, 64, 3, 1, 1, add_bias=True)
        verify_conv2d_NCHWc_int8(1, 64, 56, 64, 3, 1, 1, add_bias=True, add_relu=True)

131 132 133
        # dilation = 2
        verify_conv2d_NCHWc_int8(1, 64, 56, 64, 3, 1, 1, dilation=2)

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        # batch size
        verify_conv2d_NCHWc_int8(4, 64, 56, 64, 3, 1, 1)
        verify_conv2d_NCHWc_int8(9, 64, 56, 64, 3, 1, 1)

        # weird workloads
        verify_conv2d_NCHWc_int8(4, 4, 4, 4, 4, 4, 4)

        # inception v3 workloads where channels in / out are multiple of oc_block_factor
        verify_conv2d_NCHWc_int8(1,   32, 149,  32, 3, 1, 0)
        verify_conv2d_NCHWc_int8(1,   32, 147,  64, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1,   64,  73,  80, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,   80,  73, 192, 3, 1, 0)
        verify_conv2d_NCHWc_int8(1,  192,  35,  64, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  192,  35,  48, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,   48,  35,  64, 5, 1, 2)
        verify_conv2d_NCHWc_int8(1,   64,  35,  96, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1,   96,  35,  96, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1,  192,  35,  32, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  256,  35,  64, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  256,  35,  48, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  288,  35,  64, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  288,  35,  48, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  288,  35, 384, 3, 2, 0)
        verify_conv2d_NCHWc_int8(1,   96,  35,  96, 3, 2, 0)
        verify_conv2d_NCHWc_int8(1,  768,  17, 192, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  768,  17, 128, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  128,  17, 128, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  128,  17, 192, 7, 1, 3)
        verify_conv2d_NCHWc_int8(1,  128,  17, 128, 7, 1, 3)
        verify_conv2d_NCHWc_int8(1,  128,  17, 192, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  768,  17, 160, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  160,  17, 160, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  160,  17, 192, 7, 1, 3)
        verify_conv2d_NCHWc_int8(1,  160,  17, 160, 7, 1, 3)
        verify_conv2d_NCHWc_int8(1,  160,  17, 192, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  192,  17, 192, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  192,  17, 192, 7, 1, 3)
        verify_conv2d_NCHWc_int8(1,  192,  17, 320, 3, 2, 0)
        verify_conv2d_NCHWc_int8(1,  192,  17, 192, 3, 2, 0)
        verify_conv2d_NCHWc_int8(1, 1280,   8, 320, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1, 1280,   8, 384, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  384,   8, 384, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  384,   8, 384, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1, 1280,   8, 448, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1,  448,   8, 384, 3, 1, 1)
        verify_conv2d_NCHWc_int8(1, 1280,   8, 192, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1, 2048,   8, 320, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1, 2048,   8, 384, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1, 2048,   8, 448, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1, 2048,   8, 192, 1, 1, 0)
        verify_conv2d_NCHWc_int8(1, 1024,  19,  84, 3, 1, 1)

186 187 188 189
        # batch > 1
        verify_conv2d_NCHWc_int8(7,   32, 149,  32, 3, 1, 0)
        verify_conv2d_NCHWc_int8(8,   32, 149,  32, 3, 1, 0)
        verify_conv2d_NCHWc_int8(32,  32, 149,  32, 3, 1, 0)
190

191
        # Asymmetric padding
192 193 194 195 196 197 198 199
        verify_conv2d_NCHWc_int8(1,  32,   35,  64,  7, 2, (0, 0, 1, 1))
        verify_conv2d_NCHWc_int8(1,  64,    8, 128,  3, 1, (3, 3, 2, 2))
        verify_conv2d_NCHWc_int8(1,  64,    8,  64,  1, 1, (1, 2, 2, 1))
        verify_conv2d_NCHWc_int8(1,  64,   17, 192,  1, 1, (1, 2))
        verify_conv2d_NCHWc_int8(1,  64,    8,  64,  3, 1, (3, 1))
        verify_conv2d_NCHWc_int8(1, 128,    8, 384,  3, 1, (0, 2))
        verify_conv2d_NCHWc_int8(1,  64,    8,  64,  1, 1, "VALID")
        verify_conv2d_NCHWc_int8(1, 388,    8,  64,  3, 1, "VALID")
200
        verify_conv2d_NCHWc_int8(1, 512,   19,  64,  1, 1, "SAME")
201
        verify_conv2d_NCHWc_int8(1,  64,   16,  32,  2, 1, "SAME")
202 203
        verify_conv2d_NCHWc_int8(1,  64,    8,  64,  3, 1, (1, 2, 2, 1), add_relu=True)
        verify_conv2d_NCHWc_int8(1,  64,    8,  64,  5, 2, (1, 3), add_bias=True)
204 205 206 207
        verify_conv2d_NCHWc_int8(1,  64,   56,  64,  3, 1, "VALID", add_bias=True, add_relu=True)
        verify_conv2d_NCHWc_int8(1,  64,   56,  64, 24, 1, "SAME", add_bias=True, add_relu=True)


208 209
if __name__ == "__main__":
    test_conv2d_nchw()