merge_composite.cc 8.84 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file src/relay/pass/merge_composite.cc
 * \brief Merges expressions matching patterns into functions marked
 * as 'composite'. This is primarily intended to be used alongside the
 * external codegen infrastructure to support the case where multiple
 * Relay operators map to a single external operator.
 */

#include <tvm/te/operation.h>
#include <tvm/relay/analysis.h>
#include <tvm/relay/expr_functor.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/transform.h>

namespace tvm {
namespace relay {
namespace merge_composite {

class MergeCompositeWrapper : public ExprMutator {
 public:
  explicit MergeCompositeWrapper(const std::string& pattern_name, const Expr& pattern)
    : pattern_name_(pattern_name), pattern_(pattern) {}

  Expr ExtractPattern(const Var& pattern, const Expr& root,
          Map<std::string, Array<Expr>>* var_map) {
    if (var_map->find(pattern->name_hint()) == var_map->end()) {
      // if we haven't encountered this var yet, make a new free var and associate
      // it with the value at 'root'
      auto free_var = VarNode::make(pattern->name_hint(), Type());
      var_map->Set(pattern->name_hint(), Array<Expr>({free_var, root}));
      return std::move(free_var);
    } else {
      // if we have encountered this var already, return the free var that was created
      auto vars = (*var_map)[pattern->name_hint()];
      auto free_var = vars[0];
      auto graph_expr = vars[1];
      // make sure to first check they both map to the same node in the graph
      if (graph_expr != root) {
        return Expr();
      }
      return (*var_map)[pattern->name_hint()][0];
    }
  }

  Expr ExtractPattern(const Constant& pattern, const Expr& root,
          Map<std::string, Array<Expr>>* var_map) {
    return root;
  }

  /*!
   * \brief Try and extract a given pattern from a graph as a subgraph.
   * \param pattern The pattern to extract.
   * \param root The graph to extract from.
   * \param var_map A map between free vars in the subgraph and nodes in the graph.
   * \return The extracted subgraph.
   *
   * \note How does this work?
   *
   * A pattern consists of Relay expression containing only operator call nodes, constants
   * and free variables. The free variables indicate where the pattern can 'attach' in your
   * graph. This function takes the final call node of the pattern and the call node currently
   * being traversed in the Relay graph. It traverses through the pattern in lockstep with call node
   * from the graph (referred to as the 'root' node here) to check they're identical. If at any point
   * they differ, an empty expression is returned to signify the extract failed. If a free var is
   * reached in the pattern, the corresponding value in the root is associated with the name of the
   * free var (via the var_map) so that when we construct the composite function, the inputs match
   * up correctly with the rest of the graph. The return value of this function when successful is
   * a new Relay expression ready to be wrapped into a composite function.
   */
  Expr ExtractPattern(const Call& pattern, const Call& root,
90
          Map<std::string, Array<Expr>>* var_map, Map<Expr, Expr>* call_map) {
91 92 93 94 95 96 97 98 99 100 101
    // check to make sure both calls are to operators (not functions)
    if (!pattern->op->IsInstance<OpNode>() || !root->op->IsInstance<OpNode>())
      return Expr();
    if (pattern->op.as<OpNode>()->name != root->op.as<OpNode>()->name)
      return Expr();

    unsigned int i = 0;
    Array<Expr> new_args;
    for (const auto& arg : pattern->args) {
      Expr new_arg;
      if (arg->IsInstance<CallNode>()) {
102 103 104 105 106 107 108 109 110 111 112 113 114
        // if we've already processed this call node, return the previous result
        if (call_map->find(arg) != call_map->end()) {
          new_arg = (*call_map)[arg];
        } else {
          // fail if the root argument is not also a call node
          if (!root->args[i]->IsInstance<CallNode>()) {
            return Expr();
          }
          // if it's a call node, recursively call this function
          new_arg = ExtractPattern(Downcast<Call>(arg),
                                  Downcast<Call>(root->args[i]),
                                  var_map, call_map);
          call_map->Set(arg, new_arg);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        }
      } else if (arg->IsInstance<VarNode>()) {
        // if there's a var in the pattern, it must be a free var
        // so call the function to update the var_map
        new_arg = ExtractPattern(Downcast<Var>(arg),
                                 root->args[i],
                                 var_map);
      } else if (arg->IsInstance<ConstantNode>()) {
        // if there's a constant, simply get the corresponding
        // value of the constant from the root
        new_arg = ExtractPattern(Downcast<Constant>(arg),
                                 root->args[i],
                                 var_map);
      }
      if (!new_arg.defined()) {
        return Expr();
      }
      new_args.push_back(new_arg);
      i++;
    }
    return CallNode::make(root->op, new_args, root->attrs);
  }

  Expr VisitExpr_(const CallNode* cn) {
    Call call = GetRef<Call>(cn);
    if (call->op->IsInstance<FunctionNode>()) {
      Function func = Downcast<Function>(call->op);
      CHECK(func.defined());
      const auto name_node = FunctionGetAttr(func, attr::kComposite).as<tir::StringImmNode>();
      // don't step into existing composite functions
      if (name_node && name_node->value != "") {
        tvm::Array<tvm::relay::Expr> new_args;
        for (const auto& arg : call->args) {
          auto new_e = this->Mutate(arg);
          new_args.push_back(new_e);
        }
        return CallNode::make(call->op, new_args, call->attrs);
      }
    }

    Expr expr = ExprMutator::VisitExpr_(cn);
    call = Downcast<Call>(expr);
    if (!call->op->IsInstance<OpNode>())
      return std::move(call);

    // only call patterns are supported
    Call pattern = Downcast<Call>(pattern_);
    CHECK(pattern.defined());
    Map<std::string, Array<Expr>> args_map;
164 165
    Map<Expr, Expr> call_map;
    auto extract = ExtractPattern(pattern, call, &args_map, &call_map);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    if (extract.defined()) {
      auto free_vars = FreeVars(extract);
      // make the composite function
      auto f = FunctionNode::make(free_vars, extract, call->checked_type_, {}, Attrs());
      f = FunctionSetAttr(f, attr::kComposite, tir::StringImmNode::make(pattern_name_));
      f = FunctionSetAttr(f, attr::kPrimitive, tvm::Integer(1));
      // find the expressions associated with the free vars using the args_map
      // this tells us which expressions should be given as inputs to the composite function
      Array<Expr> args;
      for (const auto& free_var : free_vars) {
        args.push_back(args_map[free_var->name_hint()][1]);
      }
      auto new_call = CallNode::make(f, args);
      return std::move(new_call);
    }
    return std::move(call);
  }

 private:
  /*! \brief The name of the pattern to match */
  std::string pattern_name_;
  /*! \brief The pattern to match */
  Expr pattern_;
};

Expr MergeComposite(const Expr& expr,
    const Array<tir::StringImm>& pattern_names, const Array<Expr>& patterns) {
  CHECK_EQ(pattern_names.size(), patterns.size());
  Expr merged_expr = expr;
  // merge the patterns one-by-one in order
  for (size_t i = 0; i < patterns.size(); i++) {
    std::string pattern_name = pattern_names[i]->value;
    Expr pattern = patterns[i];
    merged_expr = MergeCompositeWrapper(pattern_name, pattern).Mutate(merged_expr);
  }
  return merged_expr;
}

}  // namespace merge_composite

namespace transform {

Pass MergeComposite(const tvm::Array<tir::StringImm>& pattern_names,
    const tvm::Array<Expr>& patterns) {
  runtime::TypedPackedFunc<Function(Function, IRModule, PassContext)> pass_func =
      [=](Function f, IRModule m, PassContext pc) {
        return Downcast<Function>(
            relay::merge_composite::MergeComposite(f, pattern_names, patterns));
      };
  auto func_pass = CreateFunctionPass(pass_func, 0, "MergeComposite", {});
  return func_pass;
}

TVM_REGISTER_GLOBAL("relay._transform.MergeComposite")
.set_body_typed(MergeComposite);

}  // namespace transform

}  // namespace relay
}  // namespace tvm