test_cublas.py 1.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
import tvm
import numpy as np
from tvm.contrib import cublas

def test_matmul_add():
    n = 1024
    l = 128
    m = 235
    A = tvm.placeholder((n, l), name='A')
    B = tvm.placeholder((l, m), name='B')
    C = cublas.matmul(A, B)
    s = tvm.create_schedule(C.op)

    def verify(target="cuda"):
        if not tvm.module.enabled(target):
            print("skip because %s is not enabled..." % target)
            return
        if not tvm.get_global_func("tvm.contrib.cublas.matmul", True):
35
            print("skip because extern function is not available")
36 37 38 39 40 41 42
            return
        ctx = tvm.gpu(0)
        f = tvm.build(s, [A, B, C], target)
        a = tvm.nd.array(np.random.uniform(size=(n, l)).astype(A.dtype), ctx)
        b = tvm.nd.array(np.random.uniform(size=(l, m)).astype(B.dtype), ctx)
        c = tvm.nd.array(np.zeros((n, m), dtype=C.dtype), ctx)
        f(a, b, c)
43
        tvm.testing.assert_allclose(
44 45 46 47 48 49
            c.asnumpy(), np.dot(a.asnumpy(), b.asnumpy()), rtol=1e-5)
    verify()


if __name__ == "__main__":
    test_matmul_add()