tensor_compute_op.cc 8.09 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
/*!
 *  Copyright (c) 2017 by Contributors
 * \brief Tensor Compute Op.
 * \file tensor_compute_op.cc
 */
#include <tvm/operation.h>
#include <tvm/arithmetic.h>
#include <tvm/ir.h>
#include <tvm/ir_visitor.h>
#include <tvm/ir_pass.h>
#include <unordered_set>
#include "./op_util.h"
#include "./compute_op.h"
#include "../arithmetic/compute_expr.h"

namespace tvm {
using namespace ir;
// TensorComputeOpNode
TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
.set_dispatch<TensorComputeOpNode>([](const TensorComputeOpNode *op,
                                      IRPrinter *p) {
    p->stream << "tensor_compute_op(" << op->name << ", " << op << ")";
  });

TVM_REGISTER_NODE_TYPE(TensorComputeOpNode);

int TensorComputeOpNode::num_outputs() const {
  return static_cast<int>(this->intrin->buffers.size() - this->inputs.size());
}

Type TensorComputeOpNode::output_dtype(size_t i) const {
  return this->intrin->buffers[this->inputs.size() + i]->dtype;
}

Operation TensorComputeOpNode::make(std::string name,
                                    std::string tag,
                                    Array<IterVar> axis,
                                    Array<IterVar> reduce_axis,
                                    int schedulable_ndim,
                                    TensorIntrin intrin,
                                    Array<Tensor> tensors,
                                    Array<Region> regions) {
  auto n = make_node<TensorComputeOpNode>();
  n->name = std::move(name);
  n->tag = std::move(tag);
  n->axis = std::move(axis);
  n->reduce_axis = std::move(reduce_axis);
  n->schedulable_ndim = std::move(schedulable_ndim);
  n->intrin = std::move(intrin);
  n->inputs = std::move(tensors);
  n->input_regions = std::move(regions);
  return Operation(n);
}

Array<Tensor> TensorComputeOpNode::InputTensors() const {
  return inputs;
}

Operation TensorComputeOpNode::ReplaceInputs(
    const Operation& self,
    const std::unordered_map<Tensor, Tensor>& rmap) const {
  CHECK_EQ(self.operator->(), this);
  auto n = make_node<TensorComputeOpNode>(*this);
  auto intrin = make_node<TensorIntrinNode>(*(this->intrin.operator->()));
  intrin->body = op::ReplaceTensor(this->intrin->body, rmap);
  if (intrin->reduce_init.defined()) {
    intrin->reduce_init = op::ReplaceTensor(this->intrin->reduce_init, rmap);
  }
  if (intrin->reduce_update.defined()) {
    intrin->reduce_update = op::ReplaceTensor(this->intrin->reduce_update, rmap);
  }
  for (size_t i = 0; i < n->inputs.size(); ++i) {
    Tensor t = n->inputs[i];
    if (rmap.count(t)) {
      n->inputs.Set(i, rmap.at(t));
    }
  }

  if (intrin->body.same_as(n->intrin->body) &&
      intrin->reduce_init.same_as(n->intrin->reduce_init) &&
      intrin->reduce_update.same_as(n->intrin->reduce_update) &&
      inputs.same_as(n->inputs)) {
    return self;
  } else {
    n->intrin = TensorIntrin(intrin);
    return Operation(n);
  }
}

void TensorComputeOpNode::PropBoundToInputs(
    const Operation& self,
    const std::unordered_map<const Variable*, IntSet>& dom_map,
    std::unordered_map<Tensor, TensorDom>* out_dom_map) const {
  for (size_t i = 0; i < this->inputs.size(); ++i) {
    Tensor t = this->inputs[i];
    Region region = input_regions[i];

    auto it = out_dom_map->find(t);
    if (it == out_dom_map->end()) continue;
    TensorDom& dom = it->second;
    for (size_t j = 0; j < t.ndim(); ++j) {
      dom.data[j].emplace_back(EvalSet(region[j], dom_map));
    }
  }
}

107 108
size_t TensorComputeOpNode::num_schedulable_dims() const {
  return schedulable_ndim;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

Stmt TensorComputeOpNode::BuildProvide(
    const Stage& stage,
    const std::unordered_map<IterVar, Range>& dom_map,
    bool debug_keep_trivial_loop) const {
  CHECK_EQ(stage->op.operator->(), this);

  // Start bind data.
  Stmt nop = Evaluate::make(0);
  std::vector<Stmt> input_bind_nest, output_bind_nest;
  Array<Tensor> inputs = this->InputTensors();

  // input binding
  size_t num_inputs = inputs.size();
  for (size_t i = 0; i < num_inputs; ++i) {
    Tensor tensor = inputs[i];
    Region region = this->input_regions[i];
    Buffer buffer = this->intrin->buffers[i];
    Array<NodeRef> bind_spec{buffer, tensor};

    Array<Expr> tuple;
    for (size_t i = 0; i < region.size(); ++i) {
      tuple.push_back(region[i]->min);
      tuple.push_back(region[i]->extent);
    }
    input_bind_nest.emplace_back(AttrStmt::make(
        bind_spec, ir::attr::buffer_bind_scope,
        Call::make(Handle(), ir::intrinsic::tvm_tuple, tuple, Call::Intrinsic), nop));
  }

  // output binding
  for (int i = 0; i < this->num_outputs(); ++i) {
    Tensor tensor = stage->op.output(i);
    Buffer buffer = this->intrin->buffers[num_inputs + i];
    Array<NodeRef> bind_spec{buffer, tensor};

    Array<Expr> tuple;
    for (size_t i = 0; i < this->axis.size(); ++i) {
      auto ivar = this->axis[i];
      if (i < static_cast<size_t>(this->schedulable_ndim)) {
        tuple.push_back(ivar->var);
        tuple.push_back(1);
      } else {
        Range dom = ivar->dom;
        tuple.push_back(dom->min);
        tuple.push_back(dom->extent);
      }
    }

    output_bind_nest.emplace_back(AttrStmt::make(
        bind_spec, ir::attr::buffer_bind_scope,
        Call::make(Handle(), ir::intrinsic::tvm_tuple, tuple, Call::Intrinsic), nop));
  }

  // Check variable remap
  std::unordered_map<const Variable*, Expr> vmap;
  ir::ArgBinder binder(&vmap);

  size_t tloc = stage->leaf_iter_vars.size();
169
  ComputeLoopNest n = ComputeLoopNest::make(this, stage, dom_map, debug_keep_trivial_loop);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

  if (this->reduce_axis.size() == 0) {
    std::vector<std::vector<Stmt> > nest(
        n.main_nest.begin(), n.main_nest.begin() + tloc + 1);
    nest.emplace_back(op::MakeIfNest(n.main_predicates));
    CHECK_EQ(n.init_predicates.size(), 0U);
    CHECK(this->intrin->body.defined())
        << "Normal store op for intrin " << this << " is not defined";
    Stmt body = MergeNest(output_bind_nest, this->intrin->body);
    body = MergeNest(input_bind_nest, body);
    body = ir::Substitute(body, vmap);
    body = MergeNest(binder.asserts(), body);
    body = op::Substitute(body, n.main_vmap);
    Stmt ret =  MergeNest(nest, body);
    return ret;
  } else {
    // Need to split reduction
    CHECK(this->intrin->reduce_update.defined())
        << "Reduction update op is not defined";
    // Need init and update steps
    CHECK_NE(this->reduce_axis.size(), 0U);
    std::vector<std::vector<Stmt> > common(
        n.main_nest.begin(), n.main_nest.begin() + n.num_common_loop + 1);
    std::vector<std::vector<Stmt> > update_nest(
        n.main_nest.begin() + n.num_common_loop + 1, n.main_nest.begin() + tloc + 1);
    update_nest.emplace_back(op::MakeIfNest(n.main_predicates));

    if (this->intrin->reduce_init.defined()) {
      // init nest
      std::vector<std::vector<Stmt> > init_nest(
          n.init_nest.begin(), n.init_nest.begin() + tloc + 1);
      init_nest.emplace_back(op::MakeIfNest(n.init_predicates));
      Stmt init = MergeNest(output_bind_nest, this->intrin->reduce_init);
      init = op::Substitute(init, n.init_vmap);
      init = MergeNest(init_nest, init);
      // The update
      Stmt update = MergeNest(output_bind_nest, this->intrin->reduce_update);
      update = MergeNest(input_bind_nest, update);
      update = ir::Substitute(update, vmap);
      update = MergeNest(binder.asserts(), update);
      update = op::Substitute(update, n.main_vmap);
      update = MergeNest(update_nest, update);
      return MergeNest(common, Block::make(init, update));
    } else {
      // When init op is not available, use body op for reset in the first iter.
      CHECK(this->intrin->body.defined())
          << "Normal body op is not defined";
      Stmt update = TransformUpdate(stage, dom_map, n,
                                    this->intrin->body,
                                    this->intrin->reduce_update);
      update = MergeNest(output_bind_nest, update);
      update = MergeNest(input_bind_nest, update);
      update = ir::Substitute(update, vmap);
      update = MergeNest(binder.asserts(), update);
      update = op::Substitute(update, n.main_vmap);
      update = MergeNest(update_nest, update);
      return MergeNest(common, update);
    }
  }
}

}  // namespace tvm