layers.py 3.27 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
"""Simple Layer DSL wrapper to ease creation of neural nets."""
from tvm import relay

def batch_norm_infer(data,
                     gamma=None,
                     beta=None,
                     moving_mean=None,
                     moving_var=None,
                     **kwargs):
    """Wrapper of batch_norm.

    This function automatically creates weights and return
    the first output(normalized result).

    Parameters
    ----------
    data : relay.Expr
        The input expression.

    gamma : relay.Expr
        The gamma scale factor.

    beta : relay.Expr
        The beta offset factor.

    moving_mean : relay.Expr
        Running mean of input,

    moving_var : relay.Expr
        Running variance of input.

    kwargs : dict
        Additional arguments.

    Returns
    -------
    result : relay.Expr
        The result.
    """
    name = kwargs.get("name")
    kwargs.pop("name")
    if not gamma:
        gamma = relay.var(name + "_gamma")
    if not beta:
        beta = relay.var(name + "_beta")
    if not moving_mean:
        moving_mean = relay.var(name + "_moving_mean")
    if not moving_var:
        moving_var = relay.var(name + "_moving_var")
    return relay.nn.batch_norm(data,
                               gamma=gamma,
                               beta=beta,
                               moving_mean=moving_mean,
                               moving_var=moving_var,
                               **kwargs)[0]


def conv2d(data, weight=None, **kwargs):
    """Wrapper of conv2d which automatically creates weights if not given.

    Parameters
    ----------
    data : relay.Expr
        The input expression.

    weight : relay.Expr
        The weight to conv2d.

    kwargs : dict
        Additional arguments.

    Returns
    -------
    result : relay.Expr
        The result.
    """
    name = kwargs.get("name")
    kwargs.pop("name")
    if not weight:
        weight = relay.var(name + "_weight")
    return relay.nn.conv2d(data, weight, **kwargs)

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def conv2d_transpose(data, weight=None, **kwargs):
    """Wrapper of conv2d_transpose which automatically creates weights if not given.

    Parameters
    ----------
    data : relay.Expr
        The input expression.

    weight : relay.Expr
        The weight to conv2d_transpose.

    kwargs : dict
        Additional arguments.

    Returns
    -------
    result : relay.Expr
        The result.
    """
    name = kwargs.get("name")
    kwargs.pop("name")
    if not weight:
        weight = relay.var(name + "_weight")
    return relay.nn.conv2d_transpose(data, weight, **kwargs)
107

108
def dense_add_bias(data, weight=None, bias=None, units=None, **kwargs):
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """Wrapper of dense which automatically creates weights if not given.

    Parameters
    ----------
    data : relay.Expr
        The input expression.

    weight : relay.Expr
        The weight to conv2d.

    bias : relay.Expr
        The bias.

    kwargs : dict
        Additional arguments.

    Returns
    -------
    result : relay.Expr
        The result.
    """
    name = kwargs.get("name")
    kwargs.pop("name")
    if not weight:
        weight = relay.var(name + "_weight")
    if not bias:
        bias = relay.var(name + "_bias")
136
    data = relay.nn.dense(data, weight, units, **kwargs)
137 138
    data = relay.nn.bias_add(data, bias)
    return data