squeezenet.py 3.83 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
"""
Symbol of SqueezeNet

Reference:
Iandola, Forrest N., et al.
"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016).
"""

import mxnet as mx

# Helpers
def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels):
    net = _make_fire_conv(net, squeeze_channels, 1, 0)

    left = _make_fire_conv(net, expand1x1_channels, 1, 0)
    right = _make_fire_conv(net, expand3x3_channels, 3, 1)
    # NOTE : Assume NCHW layout here
    net = mx.sym.concat(left, right, dim=1)

    return net

def _make_fire_conv(net, channels, kernel_size, padding=0):
    net = mx.sym.Convolution(net, num_filter=channels, kernel=(kernel_size, kernel_size),
                             pad=(padding, padding))
    net = mx.sym.Activation(net, act_type='relu')
    return net

# Net
def get_symbol(num_classes=1000, version='1.0', **kwargs):
    """Get symbol of SqueezeNet

    Parameters
    ----------
    num_classes: int
        The number of classification results

    version : str, optional
        "1.0" or "1.1" of SqueezeNet
    """
    assert version in ['1.0', '1.1'], ("Unsupported SqueezeNet version {version}:"
                                       "1.0 or 1.1 expected".format(version=version))
    net = mx.sym.Variable("data")
    if version == '1.0':
        net = mx.sym.Convolution(net, num_filter=96, kernel=(7, 7), stride=(2, 2), pad=(3, 3))
        net = mx.sym.Activation(net, act_type='relu')
        net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2))
        net = _make_fire(net, 16, 64, 64)
        net = _make_fire(net, 16, 64, 64)
        net = _make_fire(net, 32, 128, 128)
        net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2))
        net = _make_fire(net, 32, 128, 128)
        net = _make_fire(net, 48, 192, 192)
        net = _make_fire(net, 48, 192, 192)
        net = _make_fire(net, 64, 256, 256)
        net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2))
        net = _make_fire(net, 64, 256, 256)
    else:
        net = mx.sym.Convolution(net, num_filter=64, kernel=(3, 3), stride=(2, 2), pad=(1, 1))
        net = mx.sym.Activation(net, act_type='relu')
        net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max', stride=(2, 2))
        net = _make_fire(net, 16, 64, 64)
        net = _make_fire(net, 16, 64, 64)
        net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max',  stride=(2, 2))
        net = _make_fire(net, 32, 128, 128)
        net = _make_fire(net, 32, 128, 128)
        net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type='max',  stride=(2, 2))
        net = _make_fire(net, 48, 192, 192)
        net = _make_fire(net, 48, 192, 192)
        net = _make_fire(net, 64, 256, 256)
        net = _make_fire(net, 64, 256, 256)
    net = mx.sym.Dropout(net, p=0.5)
    net = mx.sym.Convolution(net, num_filter=num_classes, kernel=(1, 1))
    net = mx.sym.Activation(net, act_type='relu')
    net = mx.sym.Pooling(data=net, global_pool=True, kernel=(13, 13), pool_type='avg')
    net = mx.sym.flatten(net)
    return mx.sym.softmax(net)