from_darknet.py 6.68 KB
Newer Older
Siju committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Compile YOLO-V2 and YOLO-V3 in DarkNet Models
=============================================
**Author**: `Siju Samuel <https://siju-samuel.github.io/>`_

This article is an introductory tutorial to deploy darknet models with TVM.
All the required models and libraries will be downloaded from the internet by the script.
This script runs the YOLO-V2 and YOLO-V3 Model with the bounding boxes
Darknet parsing have dependancy with CFFI and CV2 library
Please install CFFI and CV2 before executing this script

.. code-block:: bash

  pip install cffi
  pip install opencv-python
"""

# numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt
import sys

# tvm, relay
import tvm
from tvm import relay
from ctypes import *
from tvm.contrib.download import download_testdata
from tvm.relay.testing.darknet import __darknetffi__
import tvm.relay.testing.yolo_detection
import tvm.relay.testing.darknet

# Model name
MODEL_NAME = 'yolov3'

######################################################################
# Download required files
# -----------------------
# Download cfg and weights file if first time.
CFG_NAME = MODEL_NAME + '.cfg'
WEIGHTS_NAME = MODEL_NAME + '.weights'
REPO_URL = 'https://github.com/dmlc/web-data/blob/master/darknet/'
CFG_URL = REPO_URL + 'cfg/' + CFG_NAME + '?raw=true'
WEIGHTS_URL = 'https://pjreddie.com/media/files/' + WEIGHTS_NAME

cfg_path = download_testdata(CFG_URL, CFG_NAME, module="darknet")
weights_path = download_testdata(WEIGHTS_URL, WEIGHTS_NAME, module="darknet")

# Download and Load darknet library
if sys.platform in ['linux', 'linux2']:
    DARKNET_LIB = 'libdarknet2.0.so'
    DARKNET_URL = REPO_URL + 'lib/' + DARKNET_LIB + '?raw=true'
elif sys.platform == 'darwin':
    DARKNET_LIB = 'libdarknet_mac2.0.so'
    DARKNET_URL = REPO_URL + 'lib_osx/' + DARKNET_LIB + '?raw=true'
else:
    err = "Darknet lib is not supported on {} platform".format(sys.platform)
    raise NotImplementedError(err)

lib_path = download_testdata(DARKNET_URL, DARKNET_LIB, module="darknet")

DARKNET_LIB = __darknetffi__.dlopen(lib_path)
net = DARKNET_LIB.load_network(cfg_path.encode('utf-8'), weights_path.encode('utf-8'), 0)
dtype = 'float32'
batch_size = 1

data = np.empty([batch_size, net.c, net.h, net.w], dtype)
shape_dict = {'data': data.shape}
print("Converting darknet to relay functions...")
85
mod, params = relay.frontend.from_darknet(net, dtype=dtype, shape=data.shape)
Siju committed
86 87 88 89 90 91 92 93 94 95 96 97

######################################################################
# Import the graph to Relay
# -------------------------
# compile the model
target = 'llvm'
target_host = 'llvm'
ctx = tvm.cpu(0)
data = np.empty([batch_size, net.c, net.h, net.w], dtype)
shape = {'data': data.shape}
print("Compiling the model...")
with relay.build_config(opt_level=3):
98
    graph, lib, params = relay.build(mod,
99 100 101
                                     target=target,
                                     target_host=target_host,
                                     params=params)
Siju committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

[neth, netw] = shape['data'][2:] # Current image shape is 608x608
######################################################################
# Load a test image
# -----------------
test_image = 'dog.jpg'
print("Loading the test image...")
img_url = REPO_URL + 'data/' + test_image + '?raw=true'
img_path = download_testdata(img_url, test_image, "data")

data = tvm.relay.testing.darknet.load_image(img_path, netw, neth)
######################################################################
# Execute on TVM Runtime
# ----------------------
# The process is no different from other examples.
from tvm.contrib import graph_runtime

m = graph_runtime.create(graph, lib, ctx)

# set inputs
m.set_input('data', tvm.nd.array(data.astype(dtype)))
m.set_input(**params)
# execute
print("Running the test image...")

m.run()
# get outputs
tvm_out = []
if MODEL_NAME == 'yolov2':
    layer_out = {}
    layer_out['type'] = 'Region'
    # Get the region layer attributes (n, out_c, out_h, out_w, classes, coords, background)
    layer_attr = m.get_output(2).asnumpy()
    layer_out['biases'] = m.get_output(1).asnumpy()
    out_shape = (layer_attr[0], layer_attr[1]//layer_attr[0],
                 layer_attr[2], layer_attr[3])
    layer_out['output'] = m.get_output(0).asnumpy().reshape(out_shape)
    layer_out['classes'] = layer_attr[4]
    layer_out['coords'] = layer_attr[5]
    layer_out['background'] = layer_attr[6]
    tvm_out.append(layer_out)

elif MODEL_NAME == 'yolov3':
    for i in range(3):
        layer_out = {}
        layer_out['type'] = 'Yolo'
        # Get the yolo layer attributes (n, out_c, out_h, out_w, classes, total)
        layer_attr = m.get_output(i*4+3).asnumpy()
        layer_out['biases'] = m.get_output(i*4+2).asnumpy()
        layer_out['mask'] = m.get_output(i*4+1).asnumpy()
        out_shape = (layer_attr[0], layer_attr[1]//layer_attr[0],
                     layer_attr[2], layer_attr[3])
        layer_out['output'] = m.get_output(i*4).asnumpy().reshape(out_shape)
        layer_out['classes'] = layer_attr[4]
        tvm_out.append(layer_out)

# do the detection and bring up the bounding boxes
thresh = 0.5
nms_thresh = 0.45
img = tvm.relay.testing.darknet.load_image_color(img_path)
_, im_h, im_w = img.shape
dets = tvm.relay.testing.yolo_detection.fill_network_boxes((netw, neth), (im_w, im_h), thresh,
                                                      1, tvm_out)
last_layer = net.layers[net.n - 1]
tvm.relay.testing.yolo_detection.do_nms_sort(dets, last_layer.classes, nms_thresh)

coco_name = 'coco.names'
coco_url = REPO_URL + 'data/' + coco_name + '?raw=true'
font_name = 'arial.ttf'
font_url = REPO_URL + 'data/' + font_name + '?raw=true'
coco_path = download_testdata(coco_url, coco_name, module='data')
font_path = download_testdata(font_url, font_name, module='data')

with open(coco_path) as f:
    content = f.readlines()

names = [x.strip() for x in content]

tvm.relay.testing.yolo_detection.draw_detections(font_path, img, dets, thresh, names, last_layer.classes)
plt.imshow(img.transpose(1, 2, 0))
plt.show()