test_topi_tensor.py 3.34 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29
"""Test code for tensor operator"""
import numpy as np
import tvm
import topi
from tvm.contrib.pickle_memoize import memoize

def verify_elemwise_sum(num_args, dtype):
    shape = (3,5,4)

    tvm_placeholders = []
    for i in range(num_args):
        tvm_placeholders.append(
            tvm.placeholder(shape, name="data"+str(i), dtype=dtype))
30
    esum = topi.elemwise_sum(tvm_placeholders)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    s = tvm.create_schedule([esum.op])

    @memoize("topi.tests.test_topi_elemwise_sum")
    def get_ref_data():
        np_nd = [np.random.uniform(0, 10, size=shape).astype(dtype)
                 for i in range(num_args)]
        return np_nd
    np_nd = get_ref_data()

    def check_device(device):
        if not tvm.module.enabled(device):
            print("Skip because %s is not enabled" % device)
            return

        ctx = tvm.context(device, 0)
        out = tvm.nd.array(np.zeros(shape, dtype=dtype), ctx)
        f = tvm.build(s, tvm_placeholders + [esum], device, name="elemwise_sum")
        tvm_nd = [tvm.nd.array(nd, ctx) for nd in np_nd] + [out]
        f(*tvm_nd)
        np_out = np.sum(np.array(np_nd), axis=0)
51
        tvm.testing.assert_allclose(out.asnumpy(), np_out, rtol=1e-5)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    for device in ["llvm"]:
        check_device(device)


def verify_full(shape, dtype, fill_value):
    A = tvm.placeholder(shape, dtype=dtype, name="A")
    B = topi.full_like(A, fill_value=fill_value)
    C = topi.full(shape=shape, dtype=dtype, fill_value=fill_value)
    s1 = tvm.create_schedule([B.op])
    s2 = tvm.create_schedule([C.op])

    @memoize("topi.tests.test_topi_full")
    def get_ref_data():
        return np.full(shape, fill_value, dtype)
    np_nd = get_ref_data()

    def check_device(device):
        if not tvm.module.enabled(device):
            print("Skip because %s is not enabled" % device)
            return

        ctx = tvm.context(device, 0)
        out = tvm.nd.array(np.zeros(shape, dtype=dtype), ctx)
        f = tvm.build(s1, [A, B], device, name="full_like")
        f(tvm.nd.array(np.zeros(shape, dtype), ctx), out)
78
        tvm.testing.assert_allclose(out.asnumpy(), np_nd, rtol=1e-5)
79 80 81

        f = tvm.build(s2, [C], device, name="full")
        f(out)
82
        tvm.testing.assert_allclose(out.asnumpy(), np_nd, rtol=1e-5)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    for device in ["llvm"]:
        check_device(device)


def test_elemwise_sum():
    verify_elemwise_sum(1, "float32")
    verify_elemwise_sum(5, "float32")
    verify_elemwise_sum(4, "int32")


def test_full():
    verify_full((3,4,5), "float32", 3.14)
    verify_full((10,), "int32", 7)


if __name__ == "__main__":
    test_elemwise_sum()
    test_full()