tensorflow.py 67.7 KB
Newer Older
1 2 3 4 5 6
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition
"""TF: Tensorflow frontend."""
from __future__ import absolute_import as _abs
from __future__ import print_function

import logging
7
import warnings
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
# Numpy support
import numpy as np

import tvm
from topi.util import get_const_tuple
from .. import ir_pass
from .. import expr as _expr
from .. import op as _op

__all__ = ['from_tensorflow']

def _get_relay_op(op_name):
    try:
        op = getattr(_op, op_name)
    except AttributeError:
        try:
            op = getattr(_op.nn, op_name)
        except AttributeError:
            op = getattr(_op.image, op_name)

    if not op:
        raise RuntimeError("Unable to map op_name {} to relay".format(op_name))
    return op

class AttrCvt(object):
    """Common attribute conveter. An AttrConverter instance is a callable:
    ```
    attr_converter = AttrConverter(op_name, transforms={'a':'b', 'c':('d', 1)})
    new_op_name, new_attr = attr_converter(attrs)
    ```

    Parameters
    ----------
    op_name : str or callable
        If set as str, returned operator name is the str.
        If set as callable, returned operator is the str returned by calling:
        `op_name = func(attr)`
    transforms : dict of `new_name, or (new_name, default_value, transform function)`
        If only a new_name is provided, it's like renaming the attribute name.
        If default_value if provded, then the attribute is considered as optional.
        If transform function is provided, the original attribute value is handled
        by transform function.
    excludes : list
        A list of excluded attributes that should `NOT` appear.
        Raise NotImplementedError if occured.
    disables : list
        A list of attributes that is disabled in relay. Log warnings.
    ignores : list
        A list of attributes that is ignored in relay. Debug level logging.
    extras : dict
        A series of additional attributes should be added anyway to the returned
        attribute dict.
    custom_check : callable
        A custom function takes attribute, and return True/False.
        Raise RuntimeError if not bool(True) returned.
    """

    def __init__(self, op_name, transforms=None,
                 excludes=None, disables=None, ignores=None,
                 extras=None, custom_check=None):
        self._op_name = op_name
        self._transforms = transforms if transforms else {}
        self._excludes = excludes if excludes else []
        self._disables = disables if disables else []
        self._ignores = ignores if ignores else []
        self._extras = extras if extras else {}
        self._custom_check = custom_check

    def __call__(self, inputs, attrs, *args):
        self._ignores.append('_output_shapes')
        self._ignores.append('_input_shapes')
        self._ignores.append('T')
        self._ignores.append('use_cudnn_on_gpu')
        self._ignores.append('_node_name')
        self._ignores.append('is_training')
        self._ignores.append('_target_layout')
84
        self._ignores.append('_input_0d_mismatch')
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

        # apply custom check
        if self._custom_check:
            func, msg = self._custom_check
            if not func(attrs):
                raise RuntimeError("Check failed: {}".format(msg))
        # get new op_name
        if isinstance(self._op_name, str):
            op_name = self._op_name
        else:
            assert callable(self._op_name), "op_name can either be string or callable"
            op_name = self._op_name(attrs)
        # convert attributes
        new_attrs = {}
        for k in attrs.keys():
            if k in self._excludes:
                raise NotImplementedError("Attribute {} not supported yet.".format(k))
            elif k in self._disables:
                logging.warning("Attribute %s is disabled in relay.%s", k, op_name)
            elif k in self._ignores:
                logging.debug("Attribute %s is ignored in relay.%s", k, op_name)
            elif k in self._transforms:
                new_name, defaults, transform = self._parse_default(self._transforms[k])
                if defaults is None:
                    new_attr = self._required_attr(attrs, k)
                else:
                    new_attr = attrs.get(k, None)
                if new_attr is None:
                    new_attrs[new_name] = defaults
                else:
                    new_attrs[new_name] = transform(new_attr)
            else:
                # copy
                new_attrs[k] = attrs[k]
        # add extras
        new_attrs.update(self._extras)
        return _get_relay_op(op_name)(*inputs, **new_attrs)

    def _parse_default(self, target):
        """Helper function to parse default values."""
        if not isinstance(target, (list, tuple)):
            k, v, t = target, None, lambda x: x
        elif len(target) == 1:
            k, v, t = target[0], None, lambda x: x
        elif len(target) == 2:
            k, v, t = target[0], target[1], lambda x: x
        elif len(target) > 2:
            k, v, t = target[0], target[1], target[2]
        else:
            k = None  # should raise
        if not isinstance(k, str):
            msg = "{} is not a valid target, (name, default) expected.".format(target)
            raise ValueError(msg)
        return k, v, t

    def _parse_bool(self, value):
        """Helper function to parse default boolean values."""
        if isinstance(value, str):
            return value.strip().lower() in ['true', '1', 't', 'y', 'yes']
        return bool(value)

    def _required_attr(self, attr, key):
        """Wrapper for getting required attributes."""
        assert isinstance(attr, dict)
        if key not in attr:
            raise AttributeError("Required attribute {} not found.".format(key))
        return attr[key]

def _get_pad_pair(input1d, kernel1d, stride1d):
    if input1d % stride1d == 0:
        pad = max(kernel1d - stride1d, 0)
    else:
        pad = max(kernel1d - (input1d % stride1d), 0)

    pad_before = pad // 2
    pad_after = pad - pad_before

    return [pad_before, pad_after]

def _get_name_hint(node):
    name = ''
    if hasattr(node, "name_hint"):
        name = node.name_hint
    return name

def _math_name_picker(surfix):
    def _impl(attr):
        return 'broadcast_' + surfix
    return _impl

def _dimension_picker(prefix, surfix=''):
    def _impl(attr):
        kernel = attr['kernel_shape']
        if len(kernel) == 2:
            return prefix + '2d' + surfix
180
        raise NotImplementedError("Only 2d kernel supported.")
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    return _impl

def _dimension_constraint():
    def _dim_check(attrs):
        if len(attrs['kernel_shape']) == 2:
            return True
        return False
    return _dim_check, "Only 2d kernel supported."

def _infer_channels(inputs, params, transpose=False):
    """A hack for getting 'channles' or 'units' since tensorflow don't provide
    these attributes. We check the shape of weights provided to get the number.
    """
    out_type = ir_pass.infer_type(inputs)
    out_shapes = [get_const_tuple(out_type.checked_type.shape)]
    channels = out_shapes[0][0] if not transpose else out_shapes[0][1]
    return channels

def _rsqrt():
    def _impl(inputs, attr, *args):
        inputs.append(tvm.relay.const(-0.5, attr['T'].name))
        return AttrCvt(op_name="power")(inputs, attr)
    return _impl

def _argx(func, func_name):
    """ A common wrapper for argmin and argmax operations """
    def _impl(inputs, attr, params):
        try:
            # In Tensorflow, `axis` argument is a Tensor, not attribute. We
            # support the case where it inputs from a scalar constant.
            axis_input_name = inputs[1].name_hint
            axis_input_vlaue = [params[axis_input_name].asnumpy()[0]]
        except (IndexError, KeyError):
            raise TypeError( \
                "Unsupported argument for `{}` : `axis` should be a constant".format(func_name))
        return func(inputs[0], axis=axis_input_vlaue, keepdims=False)
    return _impl

def _elemwise(name):
    def _impl(inputs, attr, *args):
        assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(len(inputs))
        return _get_relay_op(name)(*inputs)
    return _impl

def _pooling(name):
    def _impl(inputs, attr, params):

        attr['data_format'] = attr['data_format'].decode("utf-8")
        flip_layout = False

231
        input_shape = attr['_input_shapes'][inputs[0]]
232 233 234 235 236 237 238 239 240 241 242

        if attr['data_format'] == 'NHWC':
            attr['kernel_shape'] = (attr['ksize'][1], attr['ksize'][2])
            attr['strides'] = (attr['strides'][1], attr['strides'][2])
        elif attr['data_format'] == 'NCHW':
            attr['kernel_shape'] = (attr['ksize'][2], attr['ksize'][3])
            attr['strides'] = (attr['strides'][2], attr['strides'][3])
        else:
            raise TypeError("Unsupported data_format type : {}".format(attr['data_format']))

        if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC":
243
            tmp_shape = attr['_input_shapes'][inputs[0]]
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            input_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)]
            inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2))
            attr['data_format'] = "NCHW"
            flip_layout = True

        # Fix padding
        attr['padding'] = attr['padding'].decode("utf-8")

        if attr['padding'] == 'VALID':
            attr['padding'] = [0, 0]
        elif attr['padding'] == 'SAME':
            stride_h, stride_w = attr['strides']
            kernel_h, kernel_w = attr['kernel_shape']
            if attr['data_format'] == 'NHWC':
                in_h = input_shape[1]
                in_w = input_shape[2]
            else:
                in_h = input_shape[2]
                in_w = input_shape[3]

            pad_v = _get_pad_pair(in_h, kernel_h, stride_h)
            pad_h = _get_pad_pair(in_w, kernel_w, stride_w)

            attr['padding'] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]]
        else:
            raise TypeError("Unsupported padding type : {}".format(attr['padding']))

        if name == "avg_pool":
            attr['count_include_pad'] = False

        out = AttrCvt(
            op_name=_dimension_picker(name),
            transforms={
                'kernel_shape':'pool_size',
                'data_format':'layout'},
            ignores=['ksize'],
            extras={'ceil_mode': False},
            custom_check=_dimension_constraint())(inputs, attr)

        if flip_layout:
            out = _op.transpose(out, axes=(0, 2, 3, 1))

        return out
    return _impl

def _conv(opname):
    def _impl(inputs, attr, params):
        attr['data_format'] = attr['data_format'].decode("utf-8")
        flip_layout = False

        # NCHW Layout require weights transpose
        if attr['data_format'] == 'NCHW':
296
            tmp_shape = attr['_input_shapes'][inputs[1]]
297 298
            tmp_shape = [tmp_shape[ii] for ii in (3, 2, 0, 1)]
            inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1))
299
            attr['_input_shapes'][inputs[1]] = tmp_shape
300

301 302
        input_shape = attr['_input_shapes'][inputs[0]]
        weights_shape = attr['_input_shapes'][inputs[1]]
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC":
            input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)]
            inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2))
            if opname == 'conv':
                weights_shape = [weights_shape[ii] for ii in (3, 2, 0, 1)]
                inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1))
            else:
                weights_shape = [weights_shape[ii] for ii in (2, 3, 0, 1)]
                inputs[1] = _op.transpose(inputs[1], axes=(2, 3, 0, 1))

            attr['data_format'] = "NCHW"
            attr['strides'] = [attr['strides'][ii] for ii in (0, 3, 1, 2)]
            flip_layout = True

        if attr['data_format'] == 'NHWC':
            kernel_h, kernel_w, _, depth_mult = weights_shape
            attr['kernel_shape'] = (weights_shape[0], weights_shape[1])
            if opname == 'conv':
                attr['channels'] = weights_shape[3]
            else:
                attr['channels'] = input_shape[3] * depth_mult

            if 'dilations' in attr:
327
                attr['dilations'] = (attr['dilations'][1], attr['dilations'][2])
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            attr['strides'] = (attr['strides'][1], attr['strides'][2])
        elif attr['data_format'] == 'NCHW':
            depth_mult, _, kernel_h, kernel_w = weights_shape
            attr['kernel_shape'] = (weights_shape[2], weights_shape[3])
            if opname == 'conv':
                attr['channels'] = weights_shape[0]
            else:
                attr['channels'] = input_shape[0] * depth_mult
                if attr['channels'] < 0:
                    attr['channels'] *= -1

            if 'dilations' in attr:
                attr['dilations'] = (attr['dilations'][2], attr['dilations'][3])
            attr['strides'] = (attr['strides'][2], attr['strides'][3])
        else:
            raise TypeError("Unsupported data format type : {}".format(attr['data_format']))


        if opname == 'depthwise':
            attr['groups'] = attr['channels']

        # Fix padding
        attr['padding'] = attr['padding'].decode("utf-8")

        if attr['padding'] == 'VALID':
            attr['padding'] = [0, 0]
        elif attr['padding'] == 'SAME':
            stride_h, stride_w = attr['strides']
            kernel_h, kernel_w = attr['kernel_shape']
            if attr['data_format'] == 'NHWC':
                in_h = input_shape[1]
                in_w = input_shape[2]
            else:
                in_h = input_shape[2]
                in_w = input_shape[3]

364 365 366 367 368 369 370
            dilation_h = attr['dilations'][0]
            dilation_w = attr['dilations'][1]
            dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
            dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
            pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h)
            pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w)

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

            if attr['data_format'] == 'NHWC':
                inputs[0] = _op.nn.pad(data=inputs[0],
                                       pad_width=((0, 0),
                                                  (pad_v[0], pad_v[1]),
                                                  (pad_h[0], pad_h[1]),
                                                  (0, 0)))
            else:
                inputs[0] = _op.nn.pad(data=inputs[0],
                                       pad_width=((0, 0),
                                                  (0, 0),
                                                  (pad_v[0], pad_v[1]),
                                                  (pad_h[0], pad_h[1])))

            attr['padding'] = [0, 0]

        else:
            raise TypeError("Unsupported padding type : {}".format(attr['padding']))

        if 'kernel_layout' not in attr:
            if opname == 'conv':
                attr['kernel_layout'] = 'HWIO' if attr['data_format'] == 'NHWC' else 'OIHW'
            else:
                attr['kernel_layout'] = 'HWOI' if attr['data_format'] == 'NHWC' else 'OIHW'

        use_bias = len(inputs) == 3
        channel_axis = 1 if attr['data_format'] == "NCHW" else 3

        out = AttrCvt(
            op_name=_dimension_picker('conv'),
            transforms={
                'kernel_shape': 'kernel_size',
                'data_format': 'data_layout',
                'dilations': ('dilation', (0, 0)),
                'group': ('groups', 1)},
            custom_check=_dimension_constraint())([inputs[0], inputs[1]], attr)

        if use_bias:
            out = _op.nn.bias_add(out, inputs[2], axis=channel_axis)

        if flip_layout:
            out = _op.transpose(out, axes=(0, 2, 3, 1))

        return out
    return _impl

def _decode_image():
    def _impl(inputs, attr, params):
        # Image decode wrapper: Expecting user to feed decoded input to next layer drop this layer.
420
        warnings.warn("DecodeJpeg: It's a pass through, please handle preprocessing before input")
421 422 423 424 425 426 427 428 429 430 431 432 433
        return inputs[0]
    return _impl

def _cast():
    def _impl(inputs, attr, params):
        return inputs[0].astype(attr['DstT'].name)
    return _impl

def _expand_dims():
    def _impl(inputs, attr, params):
        dim_input = inputs.pop(1)
        axis = params[dim_input.name_hint]
        params.pop(dim_input.name_hint)
434
        return _expand_dims_0d_aware(inputs[0], attr, axis=axis.asnumpy()[0])
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    return _impl

def _resize_bilinear():
    def _impl(inputs, attr, params):
        attr['size'] = attr['_output_shapes'][0][1:3]
        inputs.pop(1)
        # NHWC
        attr['layout'] = 'NHWC'

        return AttrCvt(op_name="resize",
                       ignores=['Tdim'],
                       extras={'method': "BILINEAR"})(inputs, attr)
    return _impl

def _check_numerics():
    def _impl(inputs, attr, params):
        # Making a copy node assuming no need to verify
        return AttrCvt(op_name="copy", ignores=['message'])(inputs, attr)
    return _impl


def _matmul():
    def _impl(inputs, attr, params):
        channels = _infer_channels(inputs[1], params, not attr['transpose_b'])
        if attr['transpose_a']:
            inputs[0] = _op.transpose(inputs[0], axes=(1, 0))
        if not attr['transpose_b']:
            inputs[1] = _op.transpose(inputs[1], axes=(1, 0))
        return AttrCvt(op_name="dense",
                       extras={'units': channels},
                       ignores=['transpose_a', 'transpose_b', 'T'])(inputs, attr)

    return _impl

469 470 471 472 473
def _undef():
    def _impl(inputs, attr, params):
        return _sym.__undef__()
    return _impl

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
def _identity():
    def _impl(inputs, attr, params):
        return inputs[0]
    return _impl

def _concatV2():
    def _impl(inputs, attr, params):
        pop_node = inputs.pop(len(inputs)-1)
        axis = params[pop_node.name_hint]
        params.pop(pop_node.name_hint)
        return AttrCvt(
            op_name="concatenate", ignores=['T', 'N', 'Tidx'],
            extras={'axis': int(axis.asnumpy()[0])})([inputs], attr)
    return _impl

def _concat():
    def _impl(inputs, attr, params):
        pop_node = inputs.pop(0)
        axis = params[pop_node.name_hint]
        params.pop(pop_node.name_hint)
        return AttrCvt(
            op_name="concatenate", ignores=['N'],
            extras={'axis': int(axis.asnumpy()[0])})([inputs], attr)
    return _impl

def _pack():
    def _impl(inputs, attr, params):
        axis = int(attr["axis"])
502
        inputs_reshaped = [_expand_dims_0d_aware(i, attr, axis=axis, num_newaxis=1) for i in inputs]
503 504 505
        return _op.concatenate(inputs_reshaped, axis)
    return _impl

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
def _slice():
    def _impl(inputs, attr, params):
        begin = params.pop(_get_name_hint(inputs[1])).asnumpy().tolist()
        size = params.pop(_get_name_hint(inputs[2])).asnumpy().tolist()
        data_shape = attr['_input_shapes'][inputs[0]]
        data_dim = len(data_shape)
        end = size
        for i in range(data_dim):
            if size[i] == -1:
                end[i] = data_shape[i] - begin[i]
            else:
                end[i] += begin[i]
        return _op.strided_slice(inputs[0], begin=begin, end=size)
    return _impl


522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def _reshape():
    def _impl(inputs, attr, params):
        try:
            pop_node = inputs[1]
            shape_arg = params.pop(pop_node.name_hint)
            inputs.pop(1)

            return AttrCvt(
                op_name="reshape",
                extras={'newshape':tuple(shape_arg.asnumpy())},
                ignores=['Tshape'])(inputs, attr)
        except KeyError:
            # Shape operator is already pruned, hence
            # try to infer shape by precompute prune if possible.
            if all(in_node in params for in_node in inputs[1].list_input_names()):
                func = _expr.Function(ir_pass.free_vars(inputs[1]), inputs[1])
                with tvm.relay.build_config(opt_level=0):
                    graph, lib, params = tvm.relay.build(func, target="llvm", params=params)
                ctx = tvm.context("llvm", 0)
                from tvm.contrib import graph_runtime
                m = graph_runtime.create(graph, lib, ctx)
                m.set_input(**params)
                m.run()
                params_new = m.get_output(0)
                inputs.pop(1)
                return AttrCvt(
                    op_name="reshape",
                    extras={'newshape':tuple(params_new.asnumpy().flatten())},
                    ignores=['Tshape'])(inputs, attr)
551
            raise RuntimeError("Reshape with dynamic shape input not supported yet.")
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    return _impl

def _bias_add():
    def _impl(inputs, attr, params):
        return _op.add(inputs[0], inputs[1])
    return _impl

def _squeeze():
    def _impl(inputs, attr, params):
        if len(attr['squeeze_dims']) == 0:
            attr['squeeze_dims'] = None
        return AttrCvt(
            op_name="squeeze",
            transforms={'squeeze_dims':'axis'},
            ignores=['T'])(inputs, attr)
    return _impl

def _fused_batch_norm():
    def _impl(inputs, attr, params):
        # Tensorflow: (data, gamma, beta, moving_mean, moving_variance)
        # Relay:       (data, gamma, beta, moving_mean, moving_varience)
        axis = 3
        need_cast = False

        if 'data_format' in attr:
            attr['data_format'] = attr['data_format'].decode("utf-8")
            if attr['data_format'] == 'NCHW':
                axis = 1
        if 'U' in attr:
            need_cast = True
            inputs[0] = _op.cast(inputs[0], dtype=attr['U'].name)

        out = AttrCvt(op_name='batch_norm',
                      transforms={'scale_after_normalization':'scale',
                                  'variance_epsilon':'epsilon'},
                      extras={'axis': axis},
                      ignores=['data_format', 'U'],
                      disables=['momentum'])(inputs, attr)

        if need_cast:
            out = _op.cast(out, dtype=attr['T'].name)
        return out
    return _impl

def _batch_norm():
    def _impl(inputs, attr, params):
        # Rearrange inputs from
        # (data, moving_mean, moving_variance, beta, gamma)
        #     to
        # (data, gamma, beta, moving_mean, moving_var)
        new_inputs = [inputs[0], inputs[4], inputs[3], inputs[1], inputs[2]]

        axis = 3
        if 'data_format' in attr:
            attr['data_format'] = attr['data_format'].decode("utf-8")
            if attr['data_format'] == 'NCHW':
                axis = 1

        return AttrCvt(
            op_name='batch_norm',
            transforms={'scale_after_normalization':'scale', 'variance_epsilon':'epsilon'},
            extras={'axis': axis},
            ignores=['data_format'],
            disables=['momentum'])(new_inputs, attr)
    return _impl

def _relu6():
    def _impl(inputs, attr, params):
        return _op.clip(inputs[0], a_min=0, a_max=6)
    return _impl

def _shape():
    def _impl(inputs, attr, params):
625
        return np.array(attr['_input_shapes'][inputs[0]], dtype='int32')
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    return _impl

def _fill():
    def _impl(inputs, attr, params):
        fill_arg = params.pop(inputs.pop(1).name_hint)
        return _op.full(tvm.relay.const(fill_arg.asnumpy()[0], attr['T'].name),
                        attr['_output_shapes'][0], attr['T'].name)
    return _impl

def _lrn():
    def _impl(inputs, attr, params):
        attr_new = {}
        depth_radius = attr.get('depth_radius', 5)
        size = (depth_radius * 2) + 1
        attr_new['axis'] = 3 # Fix axis, NHWC format
        attr_new['size'] = size
        attr_new['bias'] = attr.get('bias', 1)
        attr_new['alpha'] = attr.get('alpha', 1) * size
        attr_new['beta'] = attr.get('beta', 0.5)
        return AttrCvt(op_name='lrn')(inputs, attr_new)
    return _impl

def _sum():
    def _impl(inputs, attr, params):
        axis = params.pop(inputs[1].name_hint).asnumpy()
        # convert to tuple for preventing invalid parameter format error
        axis = tuple(axis)
        return AttrCvt(
            op_name='sum',
            extras={'axis': axis},
            transforms={'keep_dims':'keepdims'},
            ignores=['name', 'Tidx'])([inputs[0]], attr)
    return _impl

def _square():
    def _impl(inputs, attr, params):
        return _op.multiply(inputs[0], inputs[0])
    return _impl

def _gather_v2():
    "Tensorflow now support only gatherv2"
    def _impl(inputs, attr, params):
        axis = params[inputs.pop(2).name_hint].asnumpy()[0]
        new_input = []
        new_input.append(inputs.pop(0))
        new_input.append(inputs.pop(0))
        return  AttrCvt(op_name="take",
                        extras={'axis': tvm.const(axis, 'int32')},
                        ignores=['Tindices', 'Tparams', 'validate_indices', \
                                 'Taxis', '_class'])(new_input, attr)
    return _impl

def _infer_out_shapes(inputs, params):
    """A method to get the output shape of an intermediate node in the relay graph."""
    out_type = ir_pass.infer_type(inputs)
    out_shapes = [get_const_tuple(out_type.checked_type.shape)]
    return out_shapes

def _stridedSlice():
    def _impl(inputs, attr, params):
        """Strided Slice.
        Operator description: https://www.tensorflow.org/api_docs/python/tf/strided_slice
        Tensorflow mask validation: https://github.com/tensorflow/tensorflow/blob/master/
        tensorflow/core/util/strided_slice_op.cc#L147-L368
        """
        begin = params.pop(inputs[1].name_hint).asnumpy().tolist()
        end = params.pop(inputs[2].name_hint).asnumpy().tolist()
        stride = params.pop(inputs[3].name_hint).asnumpy().tolist()
        begin_mask = int(attr.get('begin_mask', 0))
        end_mask = int(attr.get('end_mask', 0))
        ellipsis_mask = int(attr.get('ellipsis_mask', 0))
        new_axis_mask = int(attr.get('new_axis_mask', 0))
        shrink_axis_mask = int(attr.get('shrink_axis_mask', 0))
        data_shape = attr['_input_shapes'][inputs[0]]
700
        data_dim = len(data_shape)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        stride_dim = len(stride)

        def _transform_mask(stride_dim, ellipsis_mask):
            """Handle mask inputs to create new begin, end, stride and output shape"""
            m_begin = [0] * data_dim
            m_end = [0] * data_dim
            m_stride = [0] * data_dim
            fshape_indices = []
            #Count new axis after ellipsis_mask, consider while applying ellipsis_mask.
            ellipsis_seen = False
            new_axes_after_ellipsis = 0
            for i in range(stride_dim):
                mask = 1 << i
                if ellipsis_seen and (mask & new_axis_mask) != 0:
                    new_axes_after_ellipsis += 1
                if (mask & ellipsis_mask) != 0:
                    ellipsis_seen = True
            if not ellipsis_seen:
                #Used later for extending the stride attributes in the below loop.
                ellipsis_mask |= (1 << stride_dim)
                stride_dim += 1
            final_index = 0
            for index in range(stride_dim):
                mask = 1 << index
                if mask & ellipsis_mask:
                    #Identify the end index for applying ellipsis_mask
                    to_index = min(((data_dim - (stride_dim-index)) + 1 \
                                     + new_axes_after_ellipsis), data_dim)
                    for i in range(final_index, to_index):
                        m_begin[final_index] = 0
731
                        m_end[final_index] = data_shape[final_index]
732 733 734 735 736 737 738 739 740
                        m_stride[final_index] = 1
                        fshape_indices.append(final_index)
                        final_index += 1
                elif mask &new_axis_mask:
                    fshape_indices.append(-1)
                elif not mask & new_axis_mask:
                    if final_index == len(m_begin):
                        break
                    if mask & begin_mask:
741
                        m_begin[final_index] = data_shape[final_index] \
742 743 744 745 746
                                                     if stride[index] < 0 else 0
                    elif begin[index]:
                        m_begin[final_index] = begin[index]
                    if mask & end_mask:
                        m_end[final_index] = 0 if stride[index] < 0 \
747
                                                 else data_shape[final_index]
748 749 750 751 752
                    elif end[index]:
                        m_end[final_index] = end[index]
                    m_stride[final_index] = stride[index]
                    if mask & shrink_axis_mask:
                        #Tensorflow make axis with shrink_axis_mask as dimension 1
753
                        m_begin[final_index] = data_shape[final_index] + begin[index] \
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
                                                 if begin[index] < 0 else begin[index]
                        m_end[final_index] = begin[index] + 1
                        m_stride[final_index] = 1
                        fshape_indices.append(-2)
                    else:
                        fshape_indices.append(final_index)

                    final_index += 1
            return m_begin, m_end, m_stride, fshape_indices

        fshape_indices = None
        if begin_mask or end_mask or ellipsis_mask or new_axis_mask or shrink_axis_mask:
            begin, end, stride, fshape_indices = _transform_mask(stride_dim, ellipsis_mask)
        out = _op.strided_slice(inputs[0], begin=begin, end=end, strides=stride)
        out_shape = _infer_out_shapes(out, params)[0]
        if not fshape_indices:
            fshape_indices = range(len(out_shape))

        #Create final output shape.
        final_output = []
        for gather_index in fshape_indices:
            if gather_index == -1:
                final_output.append(1)
            elif gather_index == -2:
                pass
            else:
                final_output.append(out_shape[gather_index])
781 782 783
        # Prevent 0-dim tensors which are not accepted by Relay
        if not final_output:
            final_output.append(1)
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
        return _op.reshape(out, newshape=tuple(final_output))
    return _impl

def _pad(name):
    def _impl(inputs, attr, params):
        padlist_key = inputs[1].name_hint
        if padlist_key in params:
            padlist = params.pop(padlist_key).asnumpy()
        else:
            raise RuntimeError("Required parameter {} not fount.".format(padlist_key))
        paddings = tuple([tuple(l) for l in padlist])
        attr['pad_width'] = paddings
        attr['pad_value'] = 0
        new_inputs = [inputs[0]]
        if name == 'PadV2':
            constant_values = params.pop(inputs[2].name_hint).asnumpy()
            attr['pad_value'] = constant_values[0]
        return AttrCvt(
            op_name='pad',
            ignores=['Tpaddings'],)(new_inputs, attr)
    return _impl


def _transpose():
    def _impl(inputs, attr, params):
        # If perm is not specified, axes is left empty,
        # otherwise its value is get from params
        param_name = _get_name_hint(inputs[1])
        if param_name in params:
            axes = tuple(params.get(param_name).asnumpy())
        else:
            axes = None
        return _op.transpose(inputs[0], axes=axes)
    return _impl

def _rank():
    def _impl(inputs, attr, params):
821
        input_shape = attr['_input_shapes'][inputs[0]]
822 823

        name = attr["_node_name"]
824
        params[name] = tvm.nd.array([len(input_shape)])
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        return [_expr.var(name,
                          shape=params[name].shape,
                          dtype='int32')]

    return _impl

def _range():
    def _impl(inputs, attr, params):
        start = params.pop(inputs[0].name_hint).asnumpy()[0]
        limit = params.pop(inputs[1].name_hint).asnumpy()[0]
        delta = params.pop(inputs[2].name_hint).asnumpy()[0]

        name = attr["_node_name"]
        params[name] = tvm.nd.array([start, limit, delta])
        return [_expr.var(name,
                          shape=params[name].shape,
                          dtype='int32')]
    return _impl

def _elu():
    def _impl(inputs, attr, params):
        alpha = tvm.relay.const(-1.0, attr['T'].name)
        return alpha * _op.nn.relu(tvm.relay.const(1, attr['T'].name) \
                                   - _op.exp(inputs[0])) + _op.nn.relu(inputs[0])
    return _impl

def _selu():
    def _impl(inputs, attr, params):
        alpha = tvm.relay.const(-1.6732632423543772848170429916717, attr['T'].name)
        gamma = tvm.relay.const(1.0507009873554804934193349852946, attr['T'].name)
        return gamma * (alpha * _op.nn.relu(tvm.relay.const(1, attr['T'].name) \
                                            - _op.exp(inputs[0])) + _op.nn.relu(inputs[0]))
    return _impl

def _mean():
    def _impl(inputs, attr, params):
        axis = params.pop(inputs[1].name_hint)
        return AttrCvt(op_name="mean", ignores=['Tdim', 'Tidx'],
                       transforms={'keep_dims': 'keepdims'},
                       extras={'axis': tuple(axis.asnumpy())})([inputs[0]], attr)
    return _impl

def _broadcast(name):
    def _impl(inputs, attr, params):
        return AttrCvt(
            op_name=name,
            ignores=['name', 'Tidx']
        )(inputs, attr)
    return _impl

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
def _split(has_size_vector):
    # TF documentation https://www.tensorflow.org/api_docs/python/tf/split
    def _impl(inputs, attr, params):
        try:
            # order and number of inputs are different:
            # if has_size_vector:
            #     https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/split-v
            # else:
            #     https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/split

            # in addition, `axis` and `num_or_size_splits` can be tensors in TensorFlow,
            # we can only support constants
            if has_size_vector:
                input_node_index = 0
                input_axis_index = 2
                size_splits_input_name = _get_name_hint(inputs[1])
                size_splits = params[size_splits_input_name].asnumpy()
                section_beginnings = np.cumsum(size_splits)[:-1]
                indices_or_sections = tuple(section_beginnings)
            else:
                input_node_index = 1
                input_axis_index = 0
                indices_or_sections = attr['num_split']
            input_node = inputs[input_node_index]
            axis_input_name = _get_name_hint(inputs[input_axis_index])
            axis_input_value = params[axis_input_name].asnumpy()[0]
        except (IndexError, KeyError):
            raise TypeError( \
                "Unsupported argument for split: `axis` and `num_or_size_splits` " \
                "should be constants")
        return _op.split(input_node,
                         indices_or_sections=indices_or_sections,
                         axis=int(axis_input_value))
    return _impl

def _unpack():
    def _impl(inputs, attr, params):
        input_node = inputs[0]
        axis = attr['axis']
        input_shape = attr['_input_shapes'][input_node]
        axis_length = input_shape[axis]
        if axis_length < 0:
            raise TypeError("Unstack with unknown axis length")
        splitted = _op.split(input_node,
                             indices_or_sections=axis_length,
                             axis=axis)
        #name=attr.get('_node_name', 'unstack'))
        if axis == 0:
            axis = None
        else:
            axis = [axis]
        return _expr.TupleWrapper(
            _expr.Tuple([_op.squeeze(split_item, axis=axis) \
            for split_item in splitted]), len(splitted))
    return _impl

def _expand_dims_0d_aware(data, attr, axis, num_newaxis=1):
    if data in attr['_input_0d_mismatch']:
        return data if num_newaxis == 1 else \
            AttrCvt(op_name="expand_dims", ignores=['Tdim', 'N'],
                    extras={'axis': int(axis), 'num_newaxis': int(num_newaxis-1)})([data], attr)

    return AttrCvt(op_name="expand_dims", ignores=['Tdim', 'N'],
                   extras={'axis': int(axis), 'num_newaxis': int(num_newaxis)})([data], attr)


941 942 943 944 945 946
def _softmax():
    def _impl(inputs, attr, params):
        return AttrCvt(op_name='softmax',
                       transforms={'axis': ('axis', 1)})([inputs[0]], attr)
    return _impl

947 948 949 950 951
def _logical(name):
    def _impl(inputs, attr, params):
        return AttrCvt(op_name=name)(inputs, attr)
    return _impl

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
# compatible operators that do NOT require any conversion.
_identity_list = []

# _convert_map defines maps of name to converter functor(callable)
# for 1 to 1 mapping, use Renamer if nothing but name is different
# use AttrCvt if attributes need to be converted
# for 1 to N mapping(composed), use custom callable functions
# for N to 1 mapping, currently not supported(?)
_convert_map = {
    'ArgMax'                            : _argx(_op.argmax, 'argmax'),
    'ArgMin'                            : _argx(_op.argmin, 'argmin'),
    'AvgPool'                           : _pooling('avg_pool'),
    'BatchNormWithGlobalNormalization'  : _batch_norm(),
    'BiasAdd'                           : _bias_add(),
    'Cast'                              : _cast(),
    'Ceil'                              : AttrCvt('ceil'),
    'CheckNumerics'                     : _check_numerics(),
    'Concat'                            : _concat(),
    'ConcatV2'                          : _concatV2(),
    'Conv2D'                            : _conv('conv'),
    'DecodeJpeg'                        : _decode_image(),
    'Elu'                               : _elu(),
    'ExpandDims'                        : _expand_dims(),
    'Floor'                             : AttrCvt('floor'),
    'Identity'                          : _identity(),
    'MatMul'                            : _matmul(),
    'MaxPool'                           : _pooling('max_pool'),
    'Add'                               : _elemwise('add'),
    'Sub'                               : _elemwise('subtract'),
    'Mul'                               : _elemwise('multiply'),
982
    'RealDiv'                           : _elemwise('div'),
983 984 985 986 987
    'Maximum'                           : _elemwise('maximum'),
    'Minimum'                           : _elemwise('minimum'),
    'Sum'                               : _sum(),
    'Square'                            : _square(),
    'Pack'                              : _pack(),
988
    'Slice'                             : _slice(),
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    'LeakyRelu'                         : AttrCvt('leaky_relu'),
    'Relu'                              : AttrCvt('relu'),
    'Reshape'                           : _reshape(),
    'ResizeBilinear'                    : _resize_bilinear(),
    'Selu'                              : _selu(),
    'Softmax'                           : _softmax(),
    'Rsqrt'                             : _rsqrt(),
    'Squeeze'                           : _squeeze(),
    'FusedBatchNorm'                    : _fused_batch_norm(),
    'FusedBatchNormV2'                  : _fused_batch_norm(),
    'Relu6'                             : _relu6(),
    'DepthwiseConv2dNative'             : _conv('depthwise'),
    'Shape'                             : _shape(),
    'Sigmoid'                           : AttrCvt('sigmoid'),
    'Fill'                              : _fill(),
    'GatherV2'                          : _gather_v2(),
    'StridedSlice'                      : _stridedSlice(),
    'LRN'                               : _lrn(),
    'Pad'                               : _pad('Pad'),
    'PadV2'                             : _pad('PadV2'),
    'Range'                             : _range(),
    'Rank'                              : _rank(),
    'Transpose'                         : _transpose(),
    'Tanh'                              : AttrCvt('tanh'),
    'Mean'                              : _mean(),
1014 1015 1016
    'LogicalAnd'                        : _logical('logical_and'),
    'LogicalOr'                         : _logical('logical_or'),
    'LogicalNot'                        : _logical('logical_not'),
1017 1018 1019 1020 1021 1022
    'Less'                              : _broadcast('less'),
    'Greater'                           : _broadcast('greater'),
    'LessEqual'                         : _broadcast('less_equal'),
    'GreaterEqual'                      : _broadcast('greater_equal'),
    'Equal'                             : _broadcast('equal'),
    'NotEqual'                          : _broadcast('not_equal'),
1023 1024 1025
    'Split'                             : _split(False),
    'SplitV'                            : _split(True),
    'Unpack'                            : _unpack(),
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

def _LSTMBlockCell():
    def _impl(inputs, in_state_c, in_state_h, attr, params):
        """LSTM Block cell.
        Calculations are described in: https://github.com/tensorflow/tensorflow/blob/
        r1.8/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L41-L114

        Parameters
        ----------
        inputs : relay.Expr
            Input data
        in_state_c: list of relay.Expr
            Cell state input values for all the layers
        in_state_h: list of relay.Expr
            Hidden state input values for all the layers
        attrs : dict
            Dict of operator attributes
        params : dict
            List of pretrained weights and bias

        Returns
        -------
        sym : relay.Expr
            Converted relay.Expr
        output: relay.Expr
            Output state value.
        """
        in_data = inputs[0]
        in_weight = inputs[3]
        in_bias = inputs[7]
        forget_bias = attr.pop('forget_bias')
        input_shape = attr['_input_shapes'][inputs[0]]
        weight_shape = attr['_input_shapes'][inputs[3]]
1060 1061
        batch_size, input_size = input_shape[0], input_shape[1]
        num_hidden_layers = weight_shape[1]
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        num_hidden = num_hidden_layers // 4

        in_data = _op.reshape(in_data,
                              newshape=(batch_size, input_size))
        ixh = _op.concatenate([in_data, in_state_h], axis=1)
        in_weight = _op.transpose(in_weight, axes=None)
        gates = _op.nn.dense(ixh, in_weight,
                             units=num_hidden_layers)
        gates_bias = _op.add(gates, in_bias)
        gate_list = _op.split(gates_bias, indices_or_sections=4, axis=1)
        in_gate = _op.sigmoid(gate_list[0])
        in_transform = _op.tanh(gate_list[1])
        forget_gate = _op.sigmoid(gate_list[2])
        forget_gate = _op.add(forget_gate,
                              tvm.relay.const(forget_bias, attr['T'].name))
        out_gate = _op.sigmoid(gate_list[3])
        next_c = _op.add(_op.multiply(forget_gate, in_state_c),
                         _op.multiply(in_gate, in_transform))
        next_h = out_gate * _op.tanh(next_c)
        out_state = _op.concatenate([next_c, next_h], axis=1)
        out_state = _op.reshape(out_state,
                                newshape=(2, batch_size, num_hidden))
        return next_h, out_state
    return _impl

# _convert_map_rnn defines maps of rnn operator name to
# converter functor(callable) for 1 to 1 mapping.
_convert_map_rnn = {
    'LSTMBlockCell'                     : _LSTMBlockCell(),
}

class RecurrentNetworks(object):
    """Recurrent network layer handlers.

    Handle Layer operations.
    ToDo: Operators like RNN/GRU layer concepts also can be handled here

    Parameters
    ----------
    nodes : list
        list of graph nodes used for tensorflow parsing.

    out_rnn : list
        List of RecurrentNetwork outputs. This output will be appended to the
        'head' nodes of the graph.

    graph : tensorflow graph definition object
        The loaded tensorflow GraphDef

    convert_map : dict
        Dict of name : callable, where name is the op's name that
        require conversion to relay, callable are functions which
        take attrs and return (new_op_name, new_attrs)
    """
    def __init__(self, nodes, out_rnn, graph, convert_map):
        self._graph = graph
        self._convert_map = convert_map
        self._nodes = nodes
        self._out_rnn = out_rnn
        self._cur_lstm_layer = 0
        self._layer_name_list = []
        self._recurrent_ops_layer_map = {
            'LSTMBlockCell'               : self._LSTMBlockCellLayer(),
        }

    def _LSTMBlockCellLayer(self):
        """LSTMBlockCell layer handler.

        Parameters
        ----------
        op_name : str
            Operator name, eg:LSTMBlockCell

        layer_name : str list
            Layer name is used for creating the state input placeholder.

        inputs : relay.Expr
            Input data

        attrs : dict
            Dict of operator attributes

        params : dict
            List of pretrained weights and bias

        num_layers : int
            Total number of LSTM layer presented in the graph

        Returns
        -------
        sym : relay.Expr
            The returned relay Expr
        """
        def _impl(op_name, layer_name, inputs, attrs, params, num_layers):
            in_state_c_name = layer_name+'_c'
            in_state_h_name = layer_name+'_h'

            def _init_state(num_layers, batch_size, num_hidden):
                """Create the initial states for the first layer in the graph."""
                in_state_c = [_expr.var(in_state_c_name,
                                        shape=(num_layers, batch_size, num_hidden),
                                        dtype='float32')]

                in_state_h = [_expr.var(in_state_h_name,
                                        shape=(num_layers, batch_size, num_hidden),
                                        dtype='float32')]
                return in_state_c, in_state_h

            def _get_cur_input_state(in_state_c, in_state_h, num_layers,
                                     layer, batch_size, num_hidden):
                """Select the appropriate states for the current layer"""
                in_state_c_tup = _op.split(in_state_c[0],
                                           indices_or_sections=num_layers, axis=0)
                in_state_h_tup = _op.split(in_state_h[0],
                                           indices_or_sections=num_layers, axis=0)
                cur_in_state_c = _op.reshape(in_state_c_tup[layer],
                                             newshape=(batch_size, num_hidden))
                cur_in_state_h = _op.reshape(in_state_h_tup[layer],
                                             newshape=(batch_size, num_hidden))
                return cur_in_state_c, cur_in_state_h

            def _LSTMBlockCellWrapper(inputs, attr, params,
                                      num_layers, layer):
                """LSTM cell warapper to prepare the inputs"""
                input_shape = attr['_input_shapes'][inputs[0]]
                weight_shape = attr['_input_shapes'][inputs[3]]

1189 1190
                batch_size = input_shape[0]
                num_hidden = weight_shape[1] // 4
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

                if layer == 0:
                    #Create initial states placeholder in case of first layer
                    in_state_c, in_state_h = _init_state(num_layers,
                                                         batch_size, num_hidden)
                else:
                    in_state_c = self._nodes[in_state_c_name]
                    in_state_h = self._nodes[in_state_h_name]

                cur_in_state_c, cur_in_state_h = _get_cur_input_state( \
                                                    in_state_c, in_state_h,
                                                    num_layers, layer,
                                                    batch_size, num_hidden)
                output, out_state = self._convert_map[op_name](inputs, cur_in_state_c,
                                                               cur_in_state_h,
                                                               attr, params)
                return output, out_state, in_state_c, in_state_h

            sym, cur_out_state, in_state_c, in_state_h = \
                    _LSTMBlockCellWrapper(inputs, attrs, params,
                                          num_layers, self._cur_lstm_layer)
            self._nodes[in_state_c_name] = in_state_c
            self._nodes[in_state_h_name] = in_state_h
            cur_out_state = _op.expand_dims(cur_out_state, axis=0, num_newaxis=1)
            self._out_rnn.append(cur_out_state)
            self._cur_lstm_layer += 1
            return sym
        return _impl

    def process_op(self, op_name, inputs, attrs, params):
        """Process recurrent layer operators.

        List '_recurrent_ops_layer_map' map each Layer based operators with its
        layer handlers. Total number of layers are calculated to form the input
        data shapes.

        Parameters
        ----------
        op_name : str
            Operator name, such as LSTMBlockCell

        inputs : relay.Expr
            Input data

        attrs : dict
            Dict of operator attributes

        params : dict
            List of pretrained weights and bias

        Returns
        -------
        sym : relay.Expr
            Returns relay.Expr
        """
        def _get_abs_layer_name(node):
            """Identify the layer name is already handled. Return the absolute name
            """
            if not self._layer_name_list:
                self._layer_name_list.append(node.name)
                return node.name

            for _name in self._layer_name_list:
                if _name in node.name:
                    abs_name = _name
                else:
                    self._layer_name_list.append(node.name)
                    abs_name = node.name
            return abs_name

        #Find number of layers of this same operator node in the graph
        #and also read the inputs name for the current op.
        num_layers = 0
        for _, node in enumerate(self._graph.node):
            if node.op == op_name:
                layer_name = _get_abs_layer_name(node)
                num_layers += 1

        sym = self._recurrent_ops_layer_map[op_name](op_name, layer_name, inputs, attrs,
                                                     params, num_layers)
        return sym

class GraphProto(object):
    """ A helper class for handling relay graph copying from Tensorflow GraphDef.
    Definition:
        https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto
    """
    def __init__(self):
        self._nodes = {}
        self._params = {}
1281
        self._input_shapes = {}
1282 1283 1284
        self._output_shapes = {}
        self._num_param = 0
        self._num_rnn_layer = False
1285 1286
        self._outputs_are_0d = {}
        self._input_shapes = {}
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

    def from_tensorflow(self, graph, layout="NHWC", shape=None, outputs=None):
        """Construct relay nodes from tensorflow  graph definition - GraphDef.

        Follow the tensorflow graph definition to parse and convert it to Relay.
        Some of the assumptions listed below.

            -> All Placeholders are considered as graph input.
            -> All Const nodes are params.
            -> Last node is assumed as graph output.
            -> _output_shapes : Graph should be frozen with add_shapes=True.
                                Or user can pass input shape dictionaly optionally.
            -> DecodeJpeg, ResizeBilinear: These are dummy operators.
                                           Hence user should handle preprocessing outside.
            -> CheckNumerics: No implementation as of now for this.
                              Just copies input to output.

        Parameters
        ----------
        graph : tensorflow graph definition object
            The loaded tensorflow GraphDef

        layout : target layout to be used (Optional)
            NCHW only supported now to enable NHWC models on GPU.

        shape : Dictionary of input dimensions (Optional)
            Graph level input shape dictionary.

        Returns
        -------
        sym : relay.op
            The returned relay operator
        params : dict
            A dict of name: tvm.nd.array pairs, used as pretrained weights
        """

        try:
            from tensorflow.python.framework import tensor_util
        except ImportError as e:
            raise ImportError(
                "Unable to import tensorflow which is required {}".format(e))

        missing_operators = self._parse_import_prerequisites(graph)

        if missing_operators:
            raise NotImplementedError( \
                "The following operators are not implemented: {}".format(missing_operators))

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        for node in graph.node:
            if node.op == 'Placeholder':
                if shape and node.name in shape:
                    self._input_shapes[node.name] = list(shape[node.name])
                    continue
                self._input_shapes[node.name] = \
                    tensor_util.TensorShapeProtoToList(node.attr['shape'].shape)
                for idx, dim in enumerate(self._input_shapes[node.name]):
                    if dim < 0:
                        self._input_shapes[node.name][idx] = 1
                        warnings.warn("Use 1 instead of -1 in shape of operator %s."
                                      % node.name)

                # Ignore user's input shape for Non placeholder
            elif node.op == 'Const':
                tensor_value = node.attr['value'].tensor
                self._input_shapes[node.name] = \
                    tensor_util.TensorShapeProtoToList(tensor_value.tensor_shape)
                if shape and node.name in shape:
                    warnings.warn("Ignore the passed shape. Shape in graphdef "
                                  "will be used for operator %s." % node.name)

1357 1358
        # Parse the nodes to re-create TF graph using Relay operators.
        for node in graph.node:
1359
            # Tensorflow doesn't have separate list for params extraction.
1360 1361 1362
            # Operator name 'Const' is treated as a parameter to build params dict.

            input_shapes = {}
1363
            input_0d_mismatch = set()
1364 1365
            attr = self._parse_attr(node.attr)

1366
            # Variable converted to Const will not have only value attr
1367
            if 'value' in attr and node.op == 'Const':
1368 1369 1370 1371
                self._output_shapes[node.name] = [self._input_shapes[node.name]]
            elif shape and node.name in shape:
                # Give priority to user argument.
                self._output_shapes[node.name] = [shape[node.name]]
1372 1373
            elif node.op == 'Placeholder':
                self._output_shapes[node.name] = [self._input_shapes[node.name]]
1374 1375 1376 1377
            elif '_output_shapes' in attr:
                self._output_shapes[node.name] = \
                    [tensor_util.TensorShapeProtoToList(tshape) \
                    for tshape in attr['_output_shapes']]
1378
            else:
1379 1380
                # Keep the list indexable to avoid key error.
                # Actual value will be filled after node creation.
1381
                # Will infer shapes if the graph is not frozen with add_shapes=True
1382 1383
                self._output_shapes[node.name] = [None]

1384 1385 1386 1387
            self._outputs_are_0d[node.name] = [ \
                not shape if isinstance(tshape, list) else False \
                for tshape in self._output_shapes[node.name]]

1388
            if node.op == "Placeholder":
1389
                self._output_shapes[node.name] = [self._input_shapes[node.name]]
1390
                self._nodes[node.name] = [_expr.var(node.name,
1391
                                                    shape=self._input_shapes[node.name],
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
                                                    dtype=attr['dtype'].name)]

            elif node.op == "Const":
                # All Const nodes are Param nodes, lets parse
                self._num_param += 1
                for key, value in node.attr.items():
                    self._parse_param(key, value, node.name, shape)
                if node.name not in self._nodes:
                    raise NotImplementedError( \
                        "Const {} couldn't be converted to Param.".format(node.name))

                attr = self._parse_attr(node.attr)

            else:
                # Pass the parsed shapes instead
1407
                attr["_output_shapes"] = output_shapes = self._output_shapes[node.name]
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

                # Pass the node name too in attr
                attr["_node_name"] = node.name

                # Pass the target layout
                attr["_target_layout"] = layout

                #ToDo: Some of the tensorflow operators internaly maintain
                #execution layers and its output name will the layer number along with
                #graph node name.eg: Node name:- 'Model/RNN/cell_0/RnnCell', but the
                #output name will be 'Model/RNN/cell_0/RnnCell:0'. In this case,
                #the digit has to be ignored.
                if ":" in node.input[0]:
                    in_name, _ = node.input[0].split(':')
                    node.input[0] = in_name

                # Fill shapes for all inputs in a list
                inputs = []
                for i in node.input:
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
                    # Some TensorFlow operators internally maintain execution layers
                    # and their output name includes the layer number along with
                    # graph node name. E.g. the node name is 'Model/RNN/cell_0/RnnCell', but the
                    # output tensor name is 'Model/RNN/cell_0/RnnCell:0'. In this case,
                    # the number has to be ignored for single-output nodes.
                    # On the other hand, for multi-output nodes the number is the output index,
                    # and the lack of the number implies 0.
                    tensor_name = i.split(':')
                    node_name = tensor_name[0]
                    if node_name in self._nodes:
                        in_sym = self._nodes[node_name]
                        if isinstance(in_sym, _expr.TupleWrapper):
                            tensor_slot = int(tensor_name[1]) if len(tensor_name) > 1 else 0
                            in_sym = [in_sym[tensor_slot]]
                            input_shape = self._output_shapes[node_name][tensor_slot]
                        else:
                            tensor_slot = 0
                            input_shape = self._output_shapes[node_name][0]
                        inputs.append(in_sym[0])
                        input_shapes[in_sym[0]] = input_shape
                        # This means the node is 1d in Relay and 0d in TF.
                        # See `_expand_dims_0d_aware`.
                        if self._outputs_are_0d[node_name][tensor_slot] and input_shape:
                            input_0d_mismatch.add(in_sym)

1452
                attr['_input_shapes'] = input_shapes
1453
                attr['_input_0d_mismatch'] = input_0d_mismatch
1454 1455 1456

                op = self._convert_operator(node.op, inputs, attr, graph)

1457
                # Check if op is converted to param
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
                if isinstance(op, np.ndarray):
                    self._params[node.name] = tvm.nd.array(op)
                    op = [_expr.var(node.name,
                                    shape=self._params[node.name].shape,
                                    dtype=self._params[node.name].dtype)]

                elif isinstance(op, (_expr.TupleWrapper, tuple, list)):
                    pass
                elif isinstance(op, _expr.Expr):
                    op = [op]
                else:
                    raise RuntimeError("unexpected type %s" % type(op))

                self._nodes[node.name] = op

1473 1474
                # Infer shapes even without specifying "add_shapes=True"
                if output_shapes == [None]:
1475 1476 1477 1478 1479
                    out_shapes = []
                    for node_item in self._nodes[node.name]:
                        out_type = ir_pass.infer_type(node_item)
                        out_shapes.append(get_const_tuple(out_type.checked_type.shape))
                    self._output_shapes[node.name] = out_shapes
1480 1481 1482 1483

                if self._output_shapes[node.name] and shape and node.name in shape:
                    assert self._output_shapes[node.name] == list(shape[node.name])

1484 1485
            # Infer shapes if passed explicitely
            node_output = self._nodes[node.name]
1486 1487 1488 1489 1490 1491 1492
            if shape and (not self._output_shapes[node.name][0]
                          or -1 in self._output_shapes[node.name][0]):
                out_shapes = []
                for node_item in node_output:
                    out_type = ir_pass.infer_type(node_item)
                    out_shapes.append(get_const_tuple(out_type.checked_type.shape))
                self._output_shapes[node.name] = out_shapes
1493 1494 1495 1496 1497

        out = []
        if outputs is None:
            out = op
        else:
1498 1499 1500 1501 1502 1503 1504
            for out_name in outputs:
                if ":" in out_name:
                    out_name, out_num = out_name.split(":")
                    out_num = int(out_num)
                    out.append(self._nodes[out_name][out_num])
                else:
                    out.append(self._nodes[out_name][0])
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

        #Add the RNN outputs also with 'head' nodes of the relay graph
        if self._num_rnn_layer:
            if len(self._out_rnn) == 1:
                out.append(self._out_rnn[0])
            else:
                out_rnn = _op.concatenate(self._out_rnn, axis=0)
                out.append(out_rnn)

        out = out[0] if len(out) == 1 else _expr.Tuple(out)
        func = _expr.Function(ir_pass.free_vars(out), out)

        return func, self._params

    def _parse_import_prerequisites(self, graph):
        """ Calculate the named preconditions from TensorFlow `graph`.
            Return prerequisites for parsing:
            a. Set of operator names which don't have their mapping in TVM, i.e.
                which are not supported
        """
        missing_operators = set()
        for node in graph.node:
            if node.op == "Placeholder":
                pass
            elif node.op == "Const":
                pass
            else:
                if any([node.op in t for t in [_identity_list, _convert_map, _convert_map_rnn]]):
                    pass
                else:
                    missing_operators.add(node.op)

        return missing_operators

    def _parse_param(self, key, value, name, shape):
        try:
            from tensorflow.python.framework import tensor_util
        except ImportError as e:
            raise ImportError(
                "Unable to import tensorflow which is required {}".format(e))

        if key == 'value':
            np_array = tensor_util.MakeNdarray(value.tensor)

            if np_array.dtype == np.dtype(object):
                # Object types are generally tensorflow DT_STRING (DecodeJpeg op).
                # Just leave it as placeholder.
                self._nodes[name] = [_expr.var(name, shape=shape[name], dtype='uint8')]

                return

            array_ndim = len(np_array.shape)
            if array_ndim == 0:
                new_array = np.empty([1], dtype=np_array.dtype)
                new_array[0] = np_array
                self._params[name] = tvm.nd.array(new_array)
            else:
                self._params[name] = tvm.nd.array(np_array)

            self._nodes[name] = [_expr.var(name,
                                           shape=self._params[name].shape,
                                           dtype=self._params[name].dtype)]
        else:
1568
            if key not in ('dtype', '_output_shapes', '_class'):
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                raise NotImplementedError \
                    ("Other attributes for a Const(param) Node {} ? .".format(key))

    def _get_attr(self, buf):
        """Returns the value of the attr of this buf with the given `name`.

        Args:
          buf: attrvalue protobuf.

        Returns:
          The value of the attr, as a Python object.

        Raises:
          ValueError: If this op does not have an attr with the given `name`.
        """
        fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"]

        x = buf

        ret = []

        try:
            from tensorflow.python.framework import dtypes
        except ImportError as e:
            raise ImportError(
                "Unable to import tensorflow which is required {}".format(e))

        # Treat an empty oneof value as an empty list.
        if not x.WhichOneof("value"):
            return ret
        if x.HasField("list"):
            for f in fields:
                if getattr(x.list, f):
                    if f == "type":
                        ret += [dtypes.as_dtype(x) for x in list(getattr(x.list, f))]
                    else:
                        ret += list(getattr(x.list, f))
        else:
            for f in fields:
                if x.HasField(f):
                    if f == "type":
                        ret = dtypes.as_dtype(getattr(x, f))
                    else:
                        ret = getattr(x, f)
        return ret

    def _parse_attr(self, attr_proto):
        """Convert a list of AttributeProto to a dict, with names as keys."""
        attrs = {}
        for key, value in attr_proto.items():
            attrs[key] = self._get_attr(value)

        return attrs

    def _convert_rnn_operator(self, op_name, inputs,
                              attrs, params, graph, convert_map):
        """Convert RNN and its variant operators to Relay operators.
        This converter read the input states of each layers and
        also maintain the output states of each layer in a list.

        Parameters
        ----------
        op_name : str
            Operator name, such as LSTMBlockCell
        inputs : list of relay.Expr
            List of input symbols.
        attrs : dict
            Dict of operator attributes
        params : dict
            List of pretrained weights and bias
        graph : Tensorflow graph object
            Graph is to find the number of upcoming same operator to
            calculate the number of layers.
        convert_map : dict
            Dict of name : callable, where name is the op's name that
            require conversion to relay, callable are functions which
            take attrs and return (new_op_name, new_attrs)

        Returns
        -------
        sym : relay.Expr
            Converted relay.Expr
        """
        if not self._num_rnn_layer:
            self._out_rnn = []
            self.rnn = RecurrentNetworks(self._nodes, self._out_rnn, graph, convert_map)
            self._num_rnn_layer = True
        sym = self.rnn.process_op(op_name, inputs, attrs, params)
        return sym

    def _convert_operator(self, op_name, inputs, attrs,
                          graph, identity_list=None, convert_map=None):
        """Convert from Tensorflow operator to relay operator.
        The converter must specify conversions explicity for incompatible name, and
        apply handlers to operator attributes.

        Parameters
        ----------
        op_name : str
            Operator name, such as Conv2D, AvgPool
        inputs : list of relay.op
            List of input symbols.
        attrs : dict
            Dict of operator attributes
        identity_list : list
            List of operators that don't require conversion
        convert_map : dict
            Dict of name : callable, where name is the op's name that
            require conversion to relay, callable are functions which
            take attrs and return (new_op_name, new_attrs)

        Returns
        -------
        sym : relay.op
            Converted relay operator
        """
        identity_list = identity_list if identity_list else _identity_list
        convert_map = convert_map if convert_map else _convert_map
        convert_map_rnn = _convert_map_rnn
        if op_name in identity_list:
            sym = _get_relay_op(op_name)(*inputs, **attrs)
        elif op_name in convert_map:
            sym = convert_map[op_name](inputs, attrs, self._params)
        elif op_name in convert_map_rnn:
            sym = self._convert_rnn_operator(op_name, inputs, attrs,
                                             self._params, graph,
                                             convert_map_rnn)
        else:
            raise NotImplementedError("Operator {} not implemented.".format(op_name))
        return sym


def from_tensorflow(graph, layout="NHWC", shape=None, outputs=None):
    """  Load tensorflow graph which is a python tensorflow graph object into relay.
    The companion parameters will be handled automatically.

    Parameters
    ----------
    graph : GraphDef object
        Tensorflow GraphDef

    Returns
    -------
    sym : relay.op
        Compatible relay operator

    params : dict of str to tvm.ndarray
        Dict of converted parameters stored in tvm.ndarray format
    """
    g = GraphProto()
    sym, params = g.from_tensorflow(graph, layout, shape, outputs)
    return sym, params