test_vm_serialization.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, missing-docstring, no-else-return
"""Unit tests for the Relay VM serialization and deserialization."""
import numpy as np

import tvm
from tvm import relay
from tvm.relay.module import Module as rly_module
from tvm.relay import vm as _vm
from tvm.relay.scope_builder import ScopeBuilder
from tvm.relay.prelude import Prelude
from tvm.contrib import util
from tvm.relay import testing

30
def create_exec(f, target="llvm", params=None):
31 32 33
    if isinstance(f, relay.Expr):
        mod = relay.Module()
        mod["main"] = f
34 35
        executable = _vm.compile(mod, target=target, params=params)
        return executable
36 37
    else:
        assert isinstance(f, relay.Module), "expected mod as relay.Module"
38 39
        executable = _vm.compile(f, target=target, params=params)
        return executable
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


def veval(vm, *args, ctx=tvm.cpu()):
    assert isinstance(vm, _vm.VirtualMachine), "expected VirtualMachine"
    ret = vm.run(*args)
    return ret


def run_network(mod,
                params,
                data_shape=(1, 3, 224, 224),
                dtype='float32'):
    def get_vm_output(mod, data, params, target, ctx, dtype='float32'):
        ex = relay.create_executor('vm', mod=mod, ctx=ctx)
        result = ex.evaluate()(data, **params)
        return result.asnumpy().astype(dtype)

    def get_serialized_output(mod, data, params, target, ctx, dtype='float32'):
58 59 60 61
        exe = create_exec(mod, target, params=params)
        code, lib = exe.save()
        des_exec = _vm.Executable.load_exec(code, lib)
        des_vm = _vm.VirtualMachine(des_exec)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        des_vm.init(ctx)
        result = des_vm.run(data)
        return result.asnumpy().astype(dtype)

    data = np.random.uniform(size=data_shape).astype(dtype)
    target = "llvm"
    ctx = tvm.cpu(0)

    tvm_out = get_vm_output(mod, tvm.nd.array(data.astype(dtype)), params,
                            target, ctx, dtype)
    vm_out = get_serialized_output(mod, tvm.nd.array(data.astype(dtype)), params,
                                   target, ctx, dtype)
    tvm.testing.assert_allclose(vm_out, tvm_out, rtol=1e-5, atol=1e-5)


def test_serializer():
    mod = rly_module({})
    a = relay.const(1.0, "float32")
    x = relay.var('x', shape=(10, 10), dtype='float32')
    f1 = relay.Function([x], x + a)
    glb_f1 = relay.GlobalVar("f1")
    mod[glb_f1] = f1

    b = relay.const(2.0, "float32")
    y = relay.var('y', shape=(10, 10), dtype='float32')
    f2 = relay.Function([y], y - b)
    glb_f2 = relay.GlobalVar("f2")
    mod[glb_f2] = f2

    x1 = relay.var('x1', shape=(10, 10), dtype='float32')
    y1 = relay.var('y1', shape=(10, 10), dtype='float32')
    main = relay.Function([x1, y1], glb_f1(x1) * glb_f2(y1))
    mod["main"] = main

96
    exe = create_exec(mod)
97

98
    glbs = exe.globals
99 100 101 102 103
    assert len(glbs) == 3
    assert "f1" in glbs
    assert "f2" in glbs
    assert "main" in glbs

104
    prim_ops = exe.primitive_ops
105 106 107 108
    assert any(item.startswith('fused_add') for item in prim_ops)
    assert any(item.startswith('fused_subtract') for item in prim_ops)
    assert any(item.startswith('fused_multiply') for item in prim_ops)

109
    code = exe.bytecode
110
    assert "main 5 2 5" in code
111 112
    assert "f1 2 1 3" in code
    assert "f2 2 1 3" in code
113

114
    code, lib = exe.save()
115 116 117 118 119 120 121 122 123 124
    assert isinstance(code, bytearray)
    assert isinstance(lib, tvm.module.Module)


def test_save_load():
    x = relay.var('x', shape=(10, 10))
    f = relay.Function([x], x + x)
    x_data = np.random.rand(10, 10).astype('float32')

    # serialize.
125 126
    vm = create_exec(f)
    code, lib = vm.save()
127 128 129 130 131 132
    assert isinstance(code, bytearray)

    # save and load the code and lib file.
    tmp = util.tempdir()
    path_lib = tmp.relpath("lib.so")
    lib.export_library(path_lib)
133
    with open(tmp.relpath("code.ro"), "wb") as fo:
134 135 136
        fo.write(code)

    loaded_lib = tvm.module.load(path_lib)
137
    loaded_code = bytearray(open(tmp.relpath("code.ro"), "rb").read())
138 139

    # deserialize.
140 141 142
    des_exec = _vm.Executable.load_exec(loaded_code, loaded_lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
143 144 145 146 147 148 149 150 151

    res = veval(des_vm, x_data)
    tvm.testing.assert_allclose(res.asnumpy(), x_data + x_data)


def test_const():
    c = relay.const(1.0, "float32")
    x = relay.var('x', shape=(10, 10), dtype='float32')
    f = relay.Function([x], x + c)
152 153
    exe = create_exec(f)
    code, lib = exe.save()
154
    assert isinstance(code, bytearray)
155 156 157
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    x_data = np.random.rand(10, 10).astype('float32')
    res = veval(des_vm, x_data)
    tvm.testing.assert_allclose(res.asnumpy(), x_data + 1)


def test_if():
    x = relay.var('x', shape=(10, 10))
    y = relay.var('y', shape=(10, 10))
    equal = relay.op.equal(x, y)
    equal = relay.op.nn.batch_flatten(equal)
    f = relay.Function([x, y], relay.If(relay.op.min(equal, axis=[0, 1]), x,
                                        y))
    x_data = np.random.rand(10, 10).astype('float32')
    y_data = np.random.rand(10, 10).astype('float32')

173 174 175 176 177
    exe = create_exec(f)
    code, lib = exe.save()
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

    # same
    res = veval(des_vm, x_data, x_data)
    tvm.testing.assert_allclose(res.asnumpy(), x_data)

    # diff
    res = veval(des_vm, x_data, y_data)
    tvm.testing.assert_allclose(res.asnumpy(), y_data)


def test_loop():
    mod = relay.module.Module({})
    sum_up = relay.GlobalVar('sum_up')
    i = relay.var('i', shape=[], dtype='int32')
    accum = relay.var('accum', shape=[], dtype='int32')
    sb = ScopeBuilder()
    with sb.if_scope(relay.equal(i, relay.const(0, 'int32'))):
        sb.ret(accum)
    with sb.else_scope():
        one_less = relay.subtract(i, relay.const(1, 'int32'))
        new_accum = relay.add(accum, i)
        sb.ret(relay.Call(sum_up, [one_less, new_accum]))
    func = relay.Function([i, accum], sb.get())
    mod[sum_up] = func
    loop_bound = 0
    i_data = np.array(loop_bound, dtype='int32')
    accum_data = np.array(0, dtype='int32')
    iarg = relay.var('i', shape=[], dtype='int32')
    aarg = relay.var('accum', shape=[], dtype='int32')
    mod["main"] = relay.Function([iarg, aarg], sum_up(iarg, aarg))

209 210 211 212 213
    exe = create_exec(mod)
    code, lib = exe.save()
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
214 215 216 217 218 219 220 221 222 223 224 225

    result = veval(des_vm, i_data, accum_data)
    tvm.testing.assert_allclose(result.asnumpy(), sum(range(1, loop_bound + 1)))


def test_tuple():
    ttype = relay.TupleType([relay.TensorType((1,)), relay.TensorType((10,))])
    tup = relay.var('tup', type_annotation=ttype)
    f = relay.Function([tup], relay.TupleGetItem(tup, 1))
    i_data = np.random.rand(41).astype('float32')
    j_data = np.random.rand(10).astype('float32')

226 227 228 229 230
    exe = create_exec(f)
    code, lib = exe.save()
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    result = veval(des_vm, (i_data, j_data))
    tvm.testing.assert_allclose(result.asnumpy(), j_data)


def test_adt_list():
    mod = relay.Module()
    p = Prelude(mod)

    l1 = p.cons(relay.const(1), p.nil())
    l21 = p.cons(relay.const(2), l1)
    l321 = p.cons(relay.const(3), l21)

    f = relay.Function([], l321)
    mod["main"] = f

247 248 249 250 251
    exe = create_exec(mod)
    code, lib = exe.save()
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    result = veval(des_vm)
    assert len(result) == 2
    assert len(result[1]) == 2
    assert len(result[1][1]) == 2
    res = []
    res.append(result[0].asnumpy().tolist())
    res.append(result[1][0].asnumpy().tolist())
    res.append(result[1][1][0].asnumpy().tolist())
    tvm.testing.assert_allclose(res, np.array([3, 2, 1]))


def test_adt_compose():
    mod = relay.Module()
    p = Prelude(mod)

    compose = p.compose

    # add_one = fun x -> x + 1
    sb = relay.ScopeBuilder()
    x = relay.var('x', 'float32')
    x1 = sb.let('x1', x)
    xplusone = x1 + relay.const(1.0, 'float32')
    sb.ret(xplusone)
    body = sb.get()
    add_one = relay.GlobalVar("add_one")
    add_one_func = relay.Function([x], body)

    # add_two = compose(add_one, add_one)
    sb = relay.ScopeBuilder()
    y = relay.var('y', 'float32')
    add_two_func = sb.let('add_two', compose(add_one_func, add_one_func))
    add_two_res = add_two_func(y)
    sb.ret(add_two_res)
    add_two_body = sb.get()

    mod[add_one] = add_one_func

    f = relay.Function([y], add_two_body)
    mod["main"] = f

293 294 295 296 297
    exe = create_exec(mod)
    code, lib = exe.save()
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    x_data = np.array(np.random.rand()).astype('float32')
    result = veval(des_vm, x_data)

    tvm.testing.assert_allclose(result.asnumpy(), x_data + 2.0)


def test_closure():
    x = relay.var('x', shape=())
    y = relay.var('y', shape=())
    f = relay.Function([x], x + y)
    ff = relay.Function([y], f)
    clo = ff(relay.const(1.0))
    main = clo(relay.const(2.0))

313 314 315 316 317
    exe = create_exec(main)
    code, lib = exe.save()
    des_exec = _vm.Executable.load_exec(code, lib)
    des_vm = _vm.VirtualMachine(des_exec)
    des_vm.init(tvm.cpu())
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

    res = veval(des_vm)
    tvm.testing.assert_allclose(res.asnumpy(), 3.0)


def test_resnet():
    mod, params = testing.resnet.get_workload(batch_size=1, num_layers=18)
    run_network(mod, params)


def test_mobilenet():
    mod, params = testing.mobilenet.get_workload(batch_size=1)
    run_network(mod, params)


if __name__ == "__main__":
    test_serializer()
    test_save_load()
    test_const()
    test_if()
    test_loop()
    test_tuple()
    test_adt_list()
    test_adt_compose()
    test_closure()
    test_resnet()
    test_mobilenet()