test_testing.py 4.23 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
import numpy as np
import tvm
from tvm.testing import check_numerical_grads

def test_check_numerical_grads():
    # Functions and their derivatives
    functions = [
        lambda x: (x*x*x, 3*x*x),
        lambda x: (x*x, 2*x),
        lambda x: (np.abs(x), np.sign(x)),
        lambda x: (np.log(np.abs(x)), 1/x),
        lambda x: (np.sqrt(np.abs(x)), np.sign(x)/(2*np.sqrt(np.abs(x)))),
        lambda x: (1/x, -1/(x*x)),
        lambda x: (np.sign(np.sin(1/x)), np.zeros_like(x)),
        lambda x: (x*np.sin(1/x), np.sin(1/x) - np.cos(1/x)/x),
        lambda x: (np.sin(1/x), - np.cos(1/x)/(x*x)),
    ]

    # Avoid values too close to 0 since singularities of our functions are there
    min_x = 0.5

    for func in functions:
        x_input = np.random.uniform(min_x, 10, size=(3, 4))

        # We need a function returning a scalar, so sum the results
        func_forw = lambda x: np.sum(func(x)[0])
        grads = [func(x_input)[1]]

        check_numerical_grads(func_forw, [x_input], grads)

    # Check functions with multiple arguments
    for f1 in functions:
        for f2 in functions:
            x_input = np.random.uniform(min_x, 10, size=(3, 4))
            y_input = np.random.uniform(min_x, 10, size=(3, 4))

            func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0])
            grads = [f1(x_input)[1], f2(y_input)[1]]

            check_numerical_grads(func_forw, [x_input, y_input], grads)

            # Same thing but with keyword arguments
            func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0])
            grads = {'x': f1(x_input)[1], 'y': f2(y_input)[1]}

            check_numerical_grads(func_forw, {'x': x_input, 'y': y_input}, grads)

    def _noise1(x, atol=1e-2, rtol=0.1):
        # We go in random direction using twice the original tolerance to be sure this
        # results in an error
        sqrt_n = np.sqrt(float(np.prod(x.shape)))
        tol = 2*(np.linalg.norm(x)*rtol + atol*sqrt_n)
        noise = np.random.normal(size=x.shape)
        noise = tol * noise / np.linalg.norm(noise)
        return x + noise

    def _noise2(x, atol=1e-2, rtol=0.1):
        # This noise affects just a single component
        sqrt_n = np.sqrt(float(np.prod(x.shape)))
        tol = 2*(np.linalg.norm(x)*rtol + atol*sqrt_n)
        n = np.random.randint(np.prod(x.shape))
        noise = np.zeros_like(x)
        noise.reshape(-1)[n] = tol
        return x + noise

    # Add noise to gradients and check that the function throws
    for f1 in functions:
        for f2 in functions:
            x_input = np.random.uniform(min_x, 10, size=(3, 4))
            y_input = np.random.uniform(min_x, 10, size=(3, 4))

            func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0])
            grads = [_noise1(f1(x_input)[1]), _noise1(f2(y_input)[1])]

            try:
                check_numerical_grads(func_forw, [x_input, y_input], grads)
            except AssertionError as e:
                pass
            else:
                raise AssertionError("check_numerical_grads didn't raise an exception")

            func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0])
            grads = {'x': _noise2(f1(x_input)[1]), 'y': _noise2(f2(y_input)[1])}

            try:
                check_numerical_grads(func_forw, {'x': x_input, 'y': y_input}, grads)
            except AssertionError as e:
                pass
            else:
                raise AssertionError("check_numerical_grads didn't raise an exception")


if __name__ == "__main__":
    test_check_numerical_grads()