test_op_level10.py 7.57 KB
Newer Older
1 2
""" Support level10 operator test cases.
"""
3
import numpy as np
4 5
import tvm
from tvm import relay
6
from tvm.relay.testing import ctx_list
7 8
import topi
import topi.testing
9 10

def test_collapse_sum_like():
11 12 13 14 15
    shape = (3, 4, 5, 6)
    shape_like = (4, 5, 6)
    dtype = "float32"
    x = relay.Var("x", relay.ty.TensorType(shape , dtype))
    y = relay.Var("y", relay.ty.TensorType(shape_like, dtype))
16 17
    z = relay.collapse_sum_like(x, y)
    zz = relay.ir_pass.infer_type(z)
18
    assert zz.checked_type == relay.ty.TensorType(shape_like, dtype)
19

20 21 22 23 24 25 26 27 28
    func = relay.Function([x, y], z)
    x = np.random.uniform(size=shape).astype(dtype)
    y = np.random.uniform(size=shape_like).astype(dtype)
    ref_res = np.sum(x, 0)
    for target, ctx in ctx_list():
        for kind in ["graph", "debug"]:
            intrp = relay.create_executor(kind, ctx=ctx, target=target)
            op_res = intrp.evaluate(func)(x, y)
            tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def test_broadcast_to():
    shape = (4, 1, 6)
    shape_like = (3, 4, 5, 6)
    dtype = "float32"
    x = relay.Var("x", relay.ty.TensorType(shape , dtype))
    z = relay.broadcast_to(x, shape=shape_like)
    zz = relay.ir_pass.infer_type(z)
    assert zz.checked_type == relay.ty.TensorType(shape_like, dtype)

    func = relay.Function([x], z)
    x = np.random.uniform(size=shape).astype(dtype)
    ref_res = np.broadcast_to(x, shape_like)
    for target, ctx in ctx_list():
        for kind in ["graph", "debug"]:
            intrp = relay.create_executor(kind, ctx=ctx, target=target)
            op_res = intrp.evaluate(func)(x)
            tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)

48
def test_broadcast_to_like():
49 50 51 52 53 54
    shape = (4, 1, 6)
    shape_like = (3, 4, 5, 6)
    dtype = "float32"
    x = relay.Var("x", relay.ty.TensorType(shape , dtype))
    y = relay.Var("y", relay.ty.TensorType(shape_like, dtype))
    z = relay.broadcast_to_like(x, y)
55
    zz = relay.ir_pass.infer_type(z)
56 57 58 59 60 61 62 63 64 65 66
    assert zz.checked_type == relay.ty.TensorType(shape_like, dtype)

    func = relay.Function([x, y], z)
    x = np.random.uniform(size=shape).astype(dtype)
    y = np.random.uniform(size=shape_like).astype(dtype)
    ref_res = np.broadcast_to(x, shape_like)
    for target, ctx in ctx_list():
        for kind in ["graph", "debug"]:
            intrp = relay.create_executor(kind, ctx=ctx, target=target)
            op_res = intrp.evaluate(func)(x, y)
            tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

def np_slice_like(np_data, np_shape_like, axis=None):
    begin_idx = [0 for _ in np_data.shape]
    end_idx = list(np_data.shape)
    if axis:
        for i in axis:
            if i < 0:
                i = len(np_data.shape) + i
            end_idx[i] = np_shape_like.shape[i]
    else:
        for i in range(len(np_data.shape)):
            if i < len(np_shape_like.shape):
                end_idx[i] = np_shape_like.shape[i]
    slice_idx = []
    for b, e in zip(begin_idx, end_idx):
        slice_idx.append(slice(b, e))
    np_result = np_data[tuple(slice_idx)]
    return np_result


def verify_slice_like(data, slice_like, axes, output, dtype="float32"):
    x = relay.var("data", relay.TensorType(data, dtype))
    y = relay.var("slice_like", relay.TensorType(slice_like, dtype))
    z = relay.slice_like(x, y, axes)
    zz = relay.ir_pass.infer_type(z)
    if axes:
        assert "axes" in z.astext()
    assert zz.checked_type == relay.ty.TensorType(output, dtype)

    if all(isinstance(v, int) == 0 for v in data) or \
        all(isinstance(v, int) == 0 for v in slice_like):
        return

    func = relay.Function([x, y], z)
    x_data = np.random.uniform(size=data).astype(dtype)
    y_data = np.random.uniform(size=slice_like).astype(dtype)
    ref_res = np_slice_like(x_data, y_data, axes)

    for target, ctx in ctx_list():
        for kind in ["graph", "debug"]:
            intrp = relay.create_executor(kind, ctx=ctx, target=target)
            op_res = intrp.evaluate(func)(x_data, y_data)
            tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)

def test_slice_like():
    d1, d2, d3, d4 = tvm.var("d1"), tvm.var("d2"), tvm.var("d3"), tvm.var("d4")
    verify_slice_like(data=(d1, d2, d3), slice_like=(1, 2, 3), axes=None, output=(1, 2, 3))
    verify_slice_like(data=(1, 2, 3), slice_like=(d1, d2, d3), axes=None, output=(d1, d2, d3))
    verify_slice_like(data=(d2, d3, d4), slice_like=(d1, d2, d3), axes=(1,2), output=(d2, d2, d3))
    verify_slice_like(data=(3, 4, 5), slice_like=(1, 2, 3), axes=None, output=(1, 2, 3))
    verify_slice_like(data=(3, 4, 5), slice_like=(1, 2), axes=None, output=(1, 2, 5))
    verify_slice_like(data=(3, 4, 5), slice_like=(1, 2, 3), axes=(1, 2), output=(3, 2, 3))
    verify_slice_like(data=(3, 4, 5), slice_like=(1, 2, 3), axes=(-1, -3), output=(1, 4, 3))
    verify_slice_like(data=(1, 3, 224, 224),
                      slice_like=(1, 3, 112, 112),
                      axes=(2, 3),
                      output=(1, 3, 112, 112))

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
def test_reverse_reshape():
    def verify_reverse_reshape(shape, newshape, oshape):
        x = relay.var("x", relay.TensorType(shape, "float32"))
        z = relay.reverse_reshape(x, newshape=newshape)
        zz = relay.ir_pass.infer_type(z)
        assert "newshape=" in z.astext()
        assert zz.checked_type == relay.ty.TensorType(oshape, "float32")

        func = relay.Function([x], z)
        x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32")
        ref_res = np.reshape(x_data, oshape)
        for target, ctx in ctx_list():
            for kind in ["graph", "debug"]:
                intrp = relay.create_executor(kind, ctx=ctx, target=target)
                op_res = intrp.evaluate(func)(x_data)
                tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)
    verify_reverse_reshape((2, 3, 4), (4, 0, 2), (4, 3, 2))
    verify_reverse_reshape((2, 3, 4), (2, 0, 0), (2, 3, 4))
    verify_reverse_reshape((2, 3, 4), (0, -1), (3, 8))
    verify_reverse_reshape((2, 3, 4), (-1, 0), (6, 4))
    verify_reverse_reshape((2, 3, 4), (0, -3), (2, 12))
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def verify_batch_matmul(x_shape, y_shape, out_shape, dtype="float32"):
    x = relay.var("x", relay.TensorType(x_shape, dtype))
    y = relay.var("y", relay.TensorType(y_shape, dtype))
    z = relay.nn.batch_matmul(x, y)
    zz = relay.ir_pass.infer_type(z)
    assert zz.checked_type == relay.ty.TensorType(out_shape, dtype)

    func = relay.Function([x, y], z)
    x_np = np.random.uniform(size=x_shape).astype(dtype)
    y_np = np.random.uniform(size=y_shape).astype(dtype)
    z_np = topi.testing.batch_matmul(x_np, y_np)

    for target, ctx in ctx_list():
        for kind in ["graph", "debug"]:
            intrp = relay.create_executor(kind, ctx=ctx, target=target)
            z = intrp.evaluate(func)(x_np, y_np)
            tvm.testing.assert_allclose(z.asnumpy(), z_np, rtol=1e-5)

def test_batch_matmul():
    b, m, n, k = tvm.var("b"), tvm.var("m"), tvm.var("n"), tvm.var("k")
    x = relay.var("x", relay.TensorType((b, m, k), "float32"))
    y = relay.var("y", relay.TensorType((b, n, k), "float32"))
    z = relay.nn.batch_matmul(x, y)
    zz = relay.ir_pass.infer_type(z)
    assert zz.checked_type == relay.TensorType((b, m, n), "float32")

    verify_batch_matmul((1, 16, 32), (1, 16, 32), (1, 16, 16))
    verify_batch_matmul((5, 16, 32), (5, 16, 32), (5, 16, 16))
    verify_batch_matmul((5, 16, 32), (5, 20, 32), (5, 16, 20))
    verify_batch_matmul((30, 16, 32), (30, 20, 32), (30, 16, 20))


180 181 182
if __name__ == "__main__":
    test_collapse_sum_like()
    test_broadcast_to_like()
183
    test_slice_like()
184
    test_reverse_reshape()
185
    test_batch_matmul()