test_forward.py 17.2 KB
Newer Older
Siju committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Test Darknet Models
===================
This article is a test script to test darknet models with Relay.
All the required models and libraries will be downloaded from the internet
by the script.
"""
import numpy as np
import tvm
from tvm.contrib import graph_runtime
from tvm.contrib.download import download_testdata
download_testdata.__test__ = False
from tvm.relay.testing.darknet import LAYERTYPE
from tvm.relay.testing.darknet import __darknetffi__
from tvm.relay.frontend.darknet import ACTIVATION
from tvm import relay

REPO_URL = 'https://github.com/dmlc/web-data/blob/master/darknet/'
DARKNET_LIB = 'libdarknet2.0.so'
DARKNETLIB_URL = REPO_URL + 'lib/' + DARKNET_LIB + '?raw=true'
LIB = __darknetffi__.dlopen(download_testdata(DARKNETLIB_URL, DARKNET_LIB, module='darknet'))

DARKNET_TEST_IMAGE_NAME = 'dog.jpg'
DARKNET_TEST_IMAGE_URL = REPO_URL + 'data/' + DARKNET_TEST_IMAGE_NAME +'?raw=true'
DARKNET_TEST_IMAGE_PATH = download_testdata(DARKNET_TEST_IMAGE_URL, DARKNET_TEST_IMAGE_NAME, module='data')

def _read_memory_buffer(shape, data, dtype='float32'):
    length = 1
    for x in shape:
        length *= x
    data_np = np.zeros(length, dtype=dtype)
    for i in range(length):
        data_np[i] = data[i]
    return data_np.reshape(shape)

def _get_tvm_output(net, data, build_dtype='float32', states=None):
    '''Compute TVM output'''
    dtype = 'float32'
55
    mod, params = relay.frontend.from_darknet(net, data.shape, dtype)
Siju committed
56 57
    target = 'llvm'
    shape_dict = {'data': data.shape}
58
    graph, library, params = relay.build(mod,
59 60
                                         target,
                                         params=params)
Siju committed
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    # Execute on TVM
    ctx = tvm.cpu(0)
    m = graph_runtime.create(graph, library, ctx)
    # set inputs
    m.set_input('data', tvm.nd.array(data.astype(dtype)))
    if states:
        for name in states.keys():
            m.set_input(name, tvm.nd.array(states[name].astype(dtype)))
    m.set_input(**params)
    m.run()
    # get outputs
    tvm_out = []
    for i in range(m.get_num_outputs()):
        tvm_out.append(m.get_output(i).asnumpy())
    return tvm_out

def _load_net(cfg_url, cfg_name, weights_url, weights_name):
    cfg_path = download_testdata(cfg_url, cfg_name, module='darknet')
    weights_path = download_testdata(weights_url, weights_name, module='darknet')
    net = LIB.load_network(cfg_path.encode('utf-8'), weights_path.encode('utf-8'), 0)
    return net

def verify_darknet_frontend(net, build_dtype='float32'):
    '''Test network with given input image on both darknet and tvm'''
    def get_darknet_output(net, img):
        LIB.network_predict_image(net, img)
        out = []
        for i in range(net.n):
            layer = net.layers[i]
            if layer.type == LAYERTYPE.REGION:
                attributes = np.array([layer.n, layer.out_c, layer.out_h,
                                       layer.out_w, layer.classes,
                                       layer.coords, layer.background],
                                      dtype=np.int32)
                out.insert(0, attributes)
                out.insert(0, _read_memory_buffer((layer.n*2, ), layer.biases))
                layer_outshape = (layer.batch, layer.out_c,
                                  layer.out_h, layer.out_w)
                out.insert(0, _read_memory_buffer(layer_outshape, layer.output))
            elif layer.type == LAYERTYPE.YOLO:
                attributes = np.array([layer.n, layer.out_c, layer.out_h,
                                       layer.out_w, layer.classes,
                                       layer.total],
                                      dtype=np.int32)
                out.insert(0, attributes)
                out.insert(0, _read_memory_buffer((layer.total*2, ), layer.biases))
                out.insert(0, _read_memory_buffer((layer.n, ), layer.mask, dtype='int32'))
                layer_outshape = (layer.batch, layer.out_c,
                                  layer.out_h, layer.out_w)
                out.insert(0, _read_memory_buffer(layer_outshape, layer.output))
            elif i == net.n-1:
                if layer.type == LAYERTYPE.CONNECTED:
                    darknet_outshape = (layer.batch, layer.out_c)
                elif layer.type in [LAYERTYPE.SOFTMAX]:
                    darknet_outshape = (layer.batch, layer.outputs)
                else:
                    darknet_outshape = (layer.batch, layer.out_c,
                                        layer.out_h, layer.out_w)
                out.insert(0, _read_memory_buffer(darknet_outshape, layer.output))
        return out

    dtype = 'float32'

    img = LIB.letterbox_image(LIB.load_image_color(DARKNET_TEST_IMAGE_PATH.encode('utf-8'), 0, 0), net.w, net.h)
    darknet_output = get_darknet_output(net, img)
    batch_size = 1
    data = np.empty([batch_size, img.c, img.h, img.w], dtype)
    i = 0
    for c in range(img.c):
        for h in range(img.h):
            for k in range(img.w):
                data[0][c][h][k] = img.data[i]
                i = i + 1

    tvm_out = _get_tvm_output(net, data, build_dtype)
    for tvm_outs, darknet_out in zip(tvm_out, darknet_output):
        tvm.testing.assert_allclose(darknet_out, tvm_outs, rtol=1e-3, atol=1e-3)

def _test_rnn_network(net, states):
    '''Test network with given input data on both darknet and tvm'''
    def get_darknet_network_predict(net, data):
        return LIB.network_predict(net, data)
    from cffi import FFI
    ffi = FFI()
    np_arr = np.zeros([1, net.inputs], dtype='float32')
    np_arr[0, 2] = 1
    cffi_arr = ffi.cast('float*', np_arr.ctypes.data)
    tvm_out = _get_tvm_output(net, np_arr, states=states)[0]
    darknet_output = get_darknet_network_predict(net, cffi_arr)
    darknet_out = np.zeros(net.outputs, dtype='float32')
    for i in range(net.outputs):
        darknet_out[i] = darknet_output[i]
    last_layer = net.layers[net.n-1]
    darknet_outshape = (last_layer.batch, last_layer.outputs)
    darknet_out = darknet_out.reshape(darknet_outshape)
    tvm.testing.assert_allclose(darknet_out, tvm_out, rtol=1e-4, atol=1e-4)

def test_forward_extraction():
    '''test extraction model'''
    model_name = 'extraction'
    cfg_name = model_name + '.cfg'
    weights_name = model_name + '.weights'
    cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true'
    weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true'
    net = _load_net(cfg_url, cfg_name, weights_url, weights_name)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_alexnet():
    '''test alexnet model'''
    model_name = 'alexnet'
    cfg_name = model_name + '.cfg'
    weights_name = model_name + '.weights'
    cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true'
    weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true'
    net = _load_net(cfg_url, cfg_name, weights_url, weights_name)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_resnet50():
    '''test resnet50 model'''
    model_name = 'resnet50'
    cfg_name = model_name + '.cfg'
    weights_name = model_name + '.weights'
    cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true'
    weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true'
    net = _load_net(cfg_url, cfg_name, weights_url, weights_name)
    verify_darknet_frontend(net)
    LIB.free_network(net)

192 193 194 195 196 197 198 199 200 201 202 203
def test_forward_resnext50():
    '''test resnet50 model'''
    model_name = 'resnext50'
    cfg_name = model_name + '.cfg'
    weights_name = model_name + '.weights'
    cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true'
    weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true'
    net = _load_net(cfg_url, cfg_name, weights_url, weights_name)
    verify_darknet_frontend(net)
    LIB.free_network(net)


Siju committed
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
def test_forward_yolov2():
    '''test yolov2 model'''
    model_name = 'yolov2'
    cfg_name = model_name + '.cfg'
    weights_name = model_name + '.weights'
    cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true'
    weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true'
    net = _load_net(cfg_url, cfg_name, weights_url, weights_name)
    build_dtype = {}
    verify_darknet_frontend(net, build_dtype)
    LIB.free_network(net)

def test_forward_yolov3():
    '''test yolov3 model'''
    model_name = 'yolov3'
    cfg_name = model_name + '.cfg'
    weights_name = model_name + '.weights'
    cfg_url = 'https://github.com/pjreddie/darknet/blob/master/cfg/' + cfg_name + '?raw=true'
    weights_url = 'http://pjreddie.com/media/files/' + weights_name + '?raw=true'
    net = _load_net(cfg_url, cfg_name, weights_url, weights_name)
    build_dtype = {}
    verify_darknet_frontend(net, build_dtype)
    LIB.free_network(net)

def test_forward_convolutional():
    '''test convolutional layer'''
    net = LIB.make_network(1)
    layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0)
    net.layers[0] = layer
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_dense():
    '''test fully connected layer'''
    net = LIB.make_network(1)
    layer = LIB.make_connected_layer(1, 75, 20, 1, 0, 0)
    net.layers[0] = layer
    net.w = net.h = 5
    LIB.resize_network(net, 5, 5)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_dense_batchnorm():
    '''test fully connected layer with batchnorm'''
    net = LIB.make_network(1)
    layer = LIB.make_connected_layer(1, 12, 2, 1, 1, 0)
    for i in range(5):
        layer.rolling_mean[i] = np.random.rand(1)
254
        layer.rolling_variance[i] = np.random.rand(1) + 0.5
Siju committed
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        layer.scales[i] = np.random.rand(1)
    net.layers[0] = layer
    net.w = net.h = 2
    LIB.resize_network(net, 2, 2)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_maxpooling():
    '''test maxpooling layer'''
    net = LIB.make_network(1)
    layer = LIB.make_maxpool_layer(1, 224, 224, 3, 2, 2, 0)
    net.layers[0] = layer
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_avgpooling():
    '''test avgerage pooling layer'''
    net = LIB.make_network(1)
    layer = LIB.make_avgpool_layer(1, 224, 224, 3)
    net.layers[0] = layer
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_conv_batch_norm():
    '''test batch normalization layer'''
    net = LIB.make_network(1)
    layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 1, 0, 0, 0)
    for i in range(32):
        layer.rolling_mean[i] = np.random.rand(1)
288
        layer.rolling_variance[i] = np.random.rand(1) + 0.5
Siju committed
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    net.layers[0] = layer
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_shortcut():
    '''test shortcut layer'''
    net = LIB.make_network(3)
    layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0)
    layer_2 = LIB.make_convolutional_layer(1, 111, 111, 32, 32, 1, 1, 1, 0, 1, 0, 0, 0, 0)
    layer_3 = LIB.make_shortcut_layer(1, 0, 111, 111, 32, 111, 111, 32)
    layer_3.activation = ACTIVATION.RELU
    layer_3.alpha = 1
    layer_3.beta = 1
    net.layers[0] = layer_1
    net.layers[1] = layer_2
    net.layers[2] = layer_3
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_reorg():
    '''test reorg layer'''
    net = LIB.make_network(2)
    layer_1 = LIB.make_convolutional_layer(1, 222, 222, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0)
    layer_2 = LIB.make_reorg_layer(1, 110, 110, 32, 2, 0, 0, 0)
    net.layers[0] = layer_1
    net.layers[1] = layer_2
    net.w = net.h = 222
    LIB.resize_network(net, 222, 222)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_region():
    '''test region layer'''
    net = LIB.make_network(2)
    layer_1 = LIB.make_convolutional_layer(1, 19, 19, 3, 425, 1, 1, 1, 0, 1, 0, 0, 0, 0)
    layer_2 = LIB.make_region_layer(1, 19, 19, 5, 80, 4)
    layer_2.softmax = 1
    net.layers[0] = layer_1
    net.layers[1] = layer_2
    net.w = net.h = 19
    LIB.resize_network(net, 19, 19)
    build_dtype = {}
    verify_darknet_frontend(net, build_dtype)
    LIB.free_network(net)

def test_forward_yolo_op():
    '''test yolo layer'''
    net = LIB.make_network(2)
    layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 14, 1, 3, 2, 0, 1, 0, 0, 0, 0)
    layer_2 = LIB.make_yolo_layer(1, 111, 111, 2, 9, __darknetffi__.NULL, 2)
    net.layers[0] = layer_1
    net.layers[1] = layer_2
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    build_dtype = {}
    verify_darknet_frontend(net, build_dtype)
    LIB.free_network(net)

def test_forward_upsample():
    '''test upsample layer'''
    net = LIB.make_network(1)
    layer = LIB.make_upsample_layer(1, 19, 19, 3, 3)
    layer.scale = 1
    net.layers[0] = layer
    net.w = net.h = 19
    LIB.resize_network(net, 19, 19)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_l2normalize():
    '''test l2 normalization layer'''
    net = LIB.make_network(1)
    layer = LIB.make_l2norm_layer(1, 224*224*3)
    layer.c = layer.out_c = 3
    layer.h = layer.out_h = 224
    layer.w = layer.out_w = 224
    net.layers[0] = layer
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_elu():
    '''test elu activation layer'''
    net = LIB.make_network(1)
    layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0)
    layer_1.activation = ACTIVATION.ELU
    net.layers[0] = layer_1
    net.w = net.h = 224
    LIB.resize_network(net, 224, 224)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_softmax():
    '''test softmax layer'''
    net = LIB.make_network(1)
    layer_1 = LIB.make_softmax_layer(1, 75, 1)
    layer_1.temperature = 1
    net.layers[0] = layer_1
    net.w = net.h = 5
    LIB.resize_network(net, net.w, net.h)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_softmax_temperature():
    '''test softmax layer'''
    net = LIB.make_network(1)
    layer_1 = LIB.make_softmax_layer(1, 75, 1)
    layer_1.temperature = 0.8
    net.layers[0] = layer_1
    net.w = net.h = 5
    LIB.resize_network(net, net.w, net.h)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_activation_logistic():
    '''test logistic activation layer'''
    net = LIB.make_network(1)
    batch = 1
    h = 224
    w = 224
    c = 3
    n = 32
    groups = 1
    size = 3
    stride = 2
    padding = 0
    activation = ACTIVATION.LOGISTIC
    batch_normalize = 0
    binary = 0
    xnor = 0
    adam = 0
    layer_1 = LIB.make_convolutional_layer(batch, h, w, c, n, groups, size, stride, padding,
                                           activation, batch_normalize, binary, xnor, adam)
    net.layers[0] = layer_1
    net.w = w
    net.h = h
    LIB.resize_network(net, net.w, net.h)
    verify_darknet_frontend(net)
    LIB.free_network(net)

def test_forward_rnn():
    '''test RNN layer'''
    net = LIB.make_network(1)
    batch = 1
    inputs = 4
    outputs = 4
    steps = 1
    activation = ACTIVATION.RELU
    batch_normalize = 0
    adam = 0
    layer_1 = LIB.make_rnn_layer(batch, inputs, outputs, steps, activation, batch_normalize, adam)
    net.layers[0] = layer_1
    net.inputs = inputs
    net.outputs = outputs
    net.w = net.h = 0
    LIB.resize_network(net, net.w, net.h)
    states = {"rnn0_state": np.zeros([1, net.inputs])}
    _test_rnn_network(net, states)
    LIB.free_network(net)

if __name__ == '__main__':
    test_forward_resnet50()
456
    test_forward_resnext50()
Siju committed
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    test_forward_alexnet()
    test_forward_extraction()
    test_forward_yolov2()
    test_forward_yolov3()
    test_forward_convolutional()
    test_forward_maxpooling()
    test_forward_avgpooling()
    test_forward_conv_batch_norm()
    test_forward_shortcut()
    test_forward_dense()
    test_forward_dense_batchnorm()
    test_forward_softmax()
    test_forward_softmax_temperature()
    test_forward_reorg()
    test_forward_region()
    test_forward_yolo_op()
    test_forward_upsample()
    test_forward_l2normalize()
    test_forward_elu()
    test_forward_rnn()
    test_forward_activation_logistic()