squeezenet.py 3.67 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=unused-argument

"""
Symbol of SqueezeNet

Reference:
Iandola, Forrest N., et al.
"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016).
"""

from nnvm import symbol as sym
from nnvm.testing.utils import create_workload

# Helpers
def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels):
    net = _make_fire_conv(net, squeeze_channels, 1, 0)

    left = _make_fire_conv(net, expand1x1_channels, 1, 0)
    right = _make_fire_conv(net, expand3x3_channels, 3, 1)
    # NOTE : Assume NCHW layout here
    net = sym.concatenate(left, right, axis=1)

    return net

def _make_fire_conv(net, channels, kernel_size, padding=0):
    net = sym.conv2d(net, channels=channels, kernel_size=(kernel_size, kernel_size),
                     padding=(padding, padding))
    net = sym.relu(net)
    return net

# Net
def get_symbol(num_classes, version, **kwargs):
    """Get symbol of SqueezeNet

    Parameters
    ----------
    num_classes: int
        The number of classification results

    version : str, optional
        "1.0" or "1.1" of SqueezeNet
    """
    assert version == '1.1', ("Unsupported SqueezeNet version {version}:"
                              "1.1 expected".format(version=version))
    net = sym.Variable("data")

    net = sym.conv2d(net, channels=64, kernel_size=(3, 3), strides=(2, 2))
    net = sym.relu(net)
    net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
    net = _make_fire(net, 16, 64, 64)
    net = _make_fire(net, 16, 64, 64)
    net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
    net = _make_fire(net, 32, 128, 128)
    net = _make_fire(net, 32, 128, 128)
    net = sym.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
    net = _make_fire(net, 48, 192, 192)
    net = _make_fire(net, 48, 192, 192)
    net = _make_fire(net, 64, 256, 256)
    net = _make_fire(net, 64, 256, 256)

    net = sym.dropout(net, rate=0.5)
    net = sym.conv2d(net, channels=num_classes, kernel_size=(1, 1))
    net = sym.relu(net)
    net = sym.global_avg_pool2d(net)
    return sym.softmax(net, axis=1)

def get_workload(batch_size=1, num_classes=1000, version='1.0',
                 image_shape=(3, 224, 224), dtype="float32", **kwargs):
    """Get benchmark workload for SqueezeNet

    Parameters
    ----------
    batch_size : int
        The batch size used in the model

    num_classes : int, optional
        Number of classes

    version : str, optional
        "1.0" or "1.1" of SqueezeNet

    image_shape : tuple, optional
        The input image shape

    dtype : str, optional
        The data type

    kwargs : dict
        Extra arguments

    Returns
    -------
    net : nnvm.Symbol
        The computational graph

    params : dict of str to NDArray
        The parameters.
    """
    net = get_symbol(num_classes=num_classes, version=version, **kwargs)
    return create_workload(net, batch_size, image_shape, dtype)