test_nnpack.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18
import tvm
import numpy as np
19
import scipy.signal
20
from tvm.contrib import nnpack
hlu1 committed
21
from nose import SkipTest
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


def test_fully_connected_inference():
    n = 1024
    l = 128
    m = 235
    bias = tvm.var('bias', dtype=tvm.float32)
    A = tvm.placeholder((l, ), name='A')
    B = tvm.placeholder((m, l), name='B')
    C = nnpack.fully_connected_inference(A, B)
    D = tvm.compute(C.shape, lambda i: C[i] + bias, name="D")
    s = tvm.create_schedule(D.op)

    def verify(target="llvm"):
        if not tvm.module.enabled(target):
hlu1 committed
37
            raise SkipTest("skip because %s is not enabled..." % target)
38
        if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True):
hlu1 committed
39
            raise SkipTest("skip because extern function is not available")
40
        if not nnpack.is_available():
hlu1 committed
41
            raise SkipTest("skip because nnpack is not available")
42

43 44 45 46 47 48 49
        ctx = tvm.cpu(0)
        f = tvm.build(s, [A, B, D, bias], target)
        a = tvm.nd.array(np.random.uniform(size=(l)).astype(A.dtype), ctx)
        b = tvm.nd.array(np.random.uniform(size=(m, l)).astype(B.dtype), ctx)
        d = tvm.nd.array(np.zeros((m, ), dtype=D.dtype), ctx)
        bb = 10.0
        f(a, b, d, bb)
50
        tvm.testing.assert_allclose(
51 52 53
            d.asnumpy(), np.dot(a.asnumpy(), b.asnumpy().T) + bb, rtol=1e-5)
    verify()

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def np_conv(na, nw, padding, stride=1):
    batch, in_channel, in_height, in_width = na.shape
    _, num_filter, kernel_h, kernel_w = nw.shape
    if isinstance(stride, int):
        stride_h = stride_w = stride
    else:
        stride_h, stride_w = stride

    if isinstance(padding, int):
        pad_h = pad_w = padding * 2
    else:
        pad_h, pad_w = padding
        pad_h *= 2
        pad_w *= 2

    pad_top = int(np.ceil(float(pad_h) / 2))
    pad_bottom = pad_h - pad_top
    pad_left = int(np.ceil(float(pad_w) / 2))
    pad_right = pad_w - pad_left

    out_channel = num_filter
    out_height = (in_height - kernel_h + pad_h) // stride_h + 1
    out_width = (in_width - kernel_w + pad_w) // stride_w + 1
    nb = np.zeros((batch, out_channel, out_height, out_width))
    for n in range(batch):
        for f in range(out_channel):
            for c in range(in_channel):
                if pad_h > 0:
                    apad = np.zeros((in_height + pad_h, in_width + pad_w))
                    apad[pad_top:-pad_bottom, pad_left:-pad_right] = na[n, c]
                else:
                    apad = na[n, c]
                out = scipy.signal.convolve2d(
                    apad, np.rot90(np.rot90(nw[f, c])), mode='valid')
                nb[n, f] += out[::stride, ::stride]
    return nb

def test_convolution_inference():
92
    BATCH = 8
93 94 95 96 97 98 99 100 101 102
    IH = 48
    IW = 48
    IC = 16
    OC = 16
    K = 3
    PAD = 1
    STRIDE = 1

    OH = (IH + 2*PAD - K) + 1
    OW = (IW + 2*PAD - K) + 1
103
    dshape = (BATCH, IC, IH, IW)
104 105
    kshape = (OC, IC, K, K)
    bshape = (OC, )
106
    oshape = (BATCH, OC, OH, OW)
107 108 109 110

    data = tvm.placeholder(dshape, name='data')
    kernel = tvm.placeholder(kshape, name='kernel')
    bias = tvm.placeholder(bshape, name='bias')
111 112 113
    def verify(target="llvm",
               algorithm=nnpack.ConvolutionAlgorithm.AUTO,
               with_bias=True):
114
        if not tvm.module.enabled(target):
hlu1 committed
115 116 117
            raise SkipTest("skip because %s is not enabled..." % target)
        if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True):
            raise SkipTest("skip because extern function is not available")
118
        if not nnpack.is_available():
hlu1 committed
119
            raise SkipTest("skip because nnpack is not available")
120

121
        ctx = tvm.cpu(0)
122 123 124 125 126 127
        output = nnpack.convolution_inference(
            data, kernel, bias if with_bias else None,
            [PAD, PAD, PAD, PAD], [STRIDE, STRIDE],
            algorithm=algorithm)
        s = tvm.create_schedule(output.op)

128 129 130 131 132 133 134 135 136 137
        f = tvm.build(s, [data, kernel, bias, output], target)

        na = np.random.uniform(size=dshape).astype(data.dtype)
        nb = np.random.uniform(size=kshape).astype(kernel.dtype)
        nc = np.zeros(bshape, dtype=bias.dtype)
        ta = tvm.nd.array(na, ctx)
        tb = tvm.nd.array(nb, ctx)
        tc = tvm.nd.array(nc, ctx)
        td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), ctx)
        f(ta, tb, tc, td)
138
        nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape(1, bshape[0], 1, 1)
139
        tvm.testing.assert_allclose(
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            td.asnumpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5)
    for algorithm in [
            nnpack.ConvolutionAlgorithm.AUTO,
            nnpack.ConvolutionAlgorithm.FFT_8x8,
            nnpack.ConvolutionAlgorithm.FFT_16x16,
            nnpack.ConvolutionAlgorithm.WT_8x8,
            nnpack.ConvolutionAlgorithm.IMPLICIT_GEMM,
            nnpack.ConvolutionAlgorithm.WT_8x8_FP16,
    ]:
        for with_bias in [True, False]:
            verify(algorithm=algorithm, with_bias=with_bias)


def test_convolution_inference_without_weight_transform():
    BATCH = 6
    IH = 48
    IW = 48
    IC = 16
    OC = 16
    K = 3
    PAD = 1
    STRIDE = 1

    OH = (IH + 2*PAD - K) + 1
    OW = (IW + 2*PAD - K) + 1
    dshape = (BATCH, IC, IH, IW)
    kshape = (OC, IC, K, K)
    bshape = (OC, )
    oshape = (BATCH, OC, OH, OW)

    data = tvm.placeholder(dshape, name='data')
    kernel = tvm.placeholder(kshape, name='kernel')
    bias = tvm.placeholder(bshape, name='bias')
    def verify(target="llvm",
               algorithm=nnpack.ConvolutionAlgorithm.AUTO,
               with_bias=True):
        if not tvm.module.enabled(target):
hlu1 committed
177 178 179
            raise SkipTest("skip because %s is not enabled..." % target)
        if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True):
            raise SkipTest("skip because extern function is not available")
180
        if not nnpack.is_available():
hlu1 committed
181
            raise SkipTest("skip because nnpack is not available")
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        ctx = tvm.cpu(0)
        transformed_kernel = nnpack.convolution_inference_weight_transform(
            kernel, algorithm=algorithm)
        output = nnpack.convolution_inference_without_weight_transform(
            data, transformed_kernel, bias if with_bias else None,
            [PAD, PAD, PAD, PAD], [STRIDE, STRIDE],
            algorithm=algorithm)

        s = tvm.create_schedule(output.op)

        f = tvm.build(s, [data, kernel, bias, output], target)

        na = np.random.uniform(size=dshape).astype(data.dtype)
        nb = np.random.uniform(size=kshape).astype(kernel.dtype)
        nc = np.random.uniform(size=bshape).astype(bias.dtype) if with_bias else np.zeros(bshape, dtype=bias.dtype)
        ta = tvm.nd.array(na, ctx)
        tb = tvm.nd.array(nb, ctx)
        tc = tvm.nd.array(nc, ctx)
        td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), ctx)
        f(ta, tb, tc, td)
        nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape(1, bshape[0], 1, 1)
        tvm.testing.assert_allclose(
            td.asnumpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5)
    for algorithm in [nnpack.ConvolutionAlgorithm.WT_8x8]:
        for with_bias in [True, False]:
            verify(algorithm=algorithm, with_bias=with_bias)
209

210 211

if __name__ == "__main__":
212 213
    import nose
    nose.runmodule()