const_int_bound.cc 14.1 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
9
 *
10
 *   http://www.apache.org/licenses/LICENSE-2.0
11
 *
12 13 14 15 16 17 18 19
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

20 21 22 23 24 25 26 27
/*!
 *  Copyright (c) 2019 by Contributors
 * \file tvm/arithmetic/const_int_bound.cc
 */
#include <tvm/arithmetic.h>
#include <tvm/ir_functor_ext.h>
#include <algorithm>
#include "int_op_overflow.h"
28
#include "pattern_match.h"
29 30 31 32 33 34 35 36

namespace tvm {
namespace arith {

using namespace ir;

TVM_REGISTER_NODE_TYPE(ConstIntBoundNode);

37
ConstIntBound::ConstIntBound(
38 39 40 41
    int64_t min_value, int64_t max_value) {
  auto node = make_node<ConstIntBoundNode>();
  node->min_value = min_value;
  node->max_value = max_value;
42
  node_ = std::move(node);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
}

TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
.set_dispatch<ConstIntBoundNode>([](const ConstIntBoundNode *op, IRPrinter *p) {
    p->stream << "ConstIntBound"
              << "[" << op->min_value << ", "
              << op->max_value << ']';
  });

// internal entry for const int bound
struct ConstIntBoundAnalyzer::Entry {
  int64_t min_value;
  int64_t max_value;

  bool is_const(int64_t value) const {
    return min_value == max_value && min_value == value;
  }
60 61 62 63

  bool operator==(const Entry& other) const {
    return min_value == other.min_value && max_value == other.max_value;
  }
64 65 66 67 68
};

class ConstIntBoundAnalyzer::Impl :
      public ExprFunctor<ConstIntBoundAnalyzer::Entry(const Expr&)> {
 public:
69 70 71 72 73 74 75 76 77 78 79 80 81
  /*! \brief additional bound info about expr \in bound */
  struct BoundInfo {
    /*! \brief The expr */
    Expr expr;
    /*! \brief The additional bound */
    Entry bound;

    BoundInfo() {}
    BoundInfo(Expr expr, Entry bound)
        : expr(expr), bound(bound) {
    }
  };

82 83 84 85 86 87 88 89 90 91 92 93 94
  void Bind(const Var& var, const Range& range) {
    Entry a = VisitExpr(range->min);
    Entry b = VisitExpr(range->extent);
    Entry ret;
    ret.min_value = a.min_value;
    ret.max_value = InfAwareAdd(a.max_value, InfAwareAdd(b.max_value, -1));
    Update(var, ret, false);
  }

  void Update(const Var& var,
              const Entry& info,
              bool override) {
    if (!override) {
95 96 97 98 99
      auto it = var_map_.find(var);
      if (it != var_map_.end()) {
        CHECK(it->second == info)
          << "var \'" << var << "\' already updated.";
      }
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    }
    var_map_[var] = info;
  }

  void Update(const Var& var,
              const ConstIntBound& info,
              bool override) {
    Update(var, MakeBound(info->min_value, info->max_value), override);
  }

  // Override visitor behaviors
  Entry VisitExprDefault_(const Node* op) final {
    return Everything(
        static_cast<const ir::BaseExprNode*>(op)->type);
  }

116 117 118 119 120 121 122 123 124 125 126 127
  Entry VisitExpr(const Expr& expr) final {
    Entry res = ExprFunctor::VisitExpr(expr);
    // a linear search over additional info
    // assume we won't have a lot of conditions
    for (const BoundInfo& info : additional_info_) {
      if (ir::Equal(expr, info.expr)) {
        res = Intersect(res, info.bound);
      }
    }
    return res;
  }

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  Entry VisitExpr_(const Cast* op) final {
    Entry a = VisitExpr(op->value);
    Entry b = Everything(op->type);
    return Intersect(a, b);
  }

  Entry VisitExpr_(const IntImm* op) final {
    return MakeBound(op->value, op->value);
  }

  Entry VisitExpr_(const UIntImm* op) final {
    if (op->value <= static_cast<uint64_t>(kPosInf)) {
      return MakeBound(op->value, op->value);
    } else {
      return Everything(op->type);
    }
  }

  Entry VisitExpr_(const Add* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    Entry ret;
    ret.min_value = InfAwareAdd(a.min_value, b.min_value);
    ret.max_value = InfAwareAdd(a.max_value, b.max_value);
    return ret;
  }

  Entry VisitExpr_(const Sub* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    Entry ret;
    ret.min_value = InfAwareAdd(a.min_value, -b.max_value);
    ret.max_value = InfAwareAdd(a.max_value, -b.min_value);
    return ret;
  }

  Entry VisitExpr_(const Mul* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    return BinaryOpBoundry(a, b, InfAwareMul);
  }

  Entry VisitExpr_(const Div* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    CHECK(!b.is_const(0)) << "divide by zero";
    // assume no division by 0
    if (b.min_value == 0) b.min_value = 1;
    if (b.max_value == 0) b.max_value = -1;
    return BinaryOpBoundry(a, b, InfAwareDiv);
  }

  Entry VisitExpr_(const Mod* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    if (b.min_value > 0) {
      int64_t b_max_cap = InfAwareAdd(b.max_value, -1);
      if (a.min_value >= 0) {
        // 0 <= [a_min, a_max] < b_min
        if (a.max_value < b.min_value) return a;
        // other case, we can get close to 0
        return MakeBound(0,
                         std::min(a.max_value, b_max_cap));
      } else {
        return MakeBound(std::max(a.min_value, -b_max_cap),
                         std::min(a.max_value, b_max_cap));
      }
    } else {
      CHECK(!b.is_const(0)) << "mod by zero";
      // mod by negative value is rare,
      // and we just use the simpliest rule.
      return Everything(op->type);
    }
  }

  Entry VisitExpr_(const Min* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    Entry ret;
    ret.min_value = std::min(a.min_value, b.min_value);
    ret.max_value = std::min(a.max_value, b.max_value);
    return ret;
  }

  Entry VisitExpr_(const Max* op) final {
    Entry a = VisitExpr(op->a);
    Entry b = VisitExpr(op->b);
    Entry ret;
    ret.min_value = std::max(a.min_value, b.min_value);
    ret.max_value = std::max(a.max_value, b.max_value);
    return ret;
  }

  Entry VisitExpr_(const Select* op) final {
    Entry a = VisitExpr(op->true_value);
    Entry b = VisitExpr(op->false_value);
    return Union(a, b);
  }

  Entry VisitExpr_(const Call* op) final {
    // only special handle >> and & which can be
    // used for index calculation.
    if (op->is_intrinsic(Call::shift_right)) {
      return VisitRightShift(op);
    } else if (op->is_intrinsic(Call::bitwise_and)) {
      return VisitBitwiseAnd(op);
    } else {
      return Everything(op->type);
    }
  }

  Entry VisitExpr_(const Variable* op) final {
    Var v = GetRef<Var>(op);
    auto it = var_map_.find(v);
    if (it != var_map_.end()) {
      return it->second;
    } else {
      return Everything(op->type);
    }
  }

  Entry VisitRightShift(const Call* op) {
    Entry a = VisitExpr(op->args[0]);
    Entry b = VisitExpr(op->args[1]);
    return BinaryOpBoundry(a, b, InfAwareRightShift);
  }

  Entry VisitBitwiseAnd(const Call* op) {
    Entry a = VisitExpr(op->args[0]);
    Entry b = VisitExpr(op->args[1]);
    // handle positive index case.
    if (a.min_value >= 0 && b.min_value >= 0) {
      return MakeBound(0, std::min(a.max_value, b.max_value));
    } else {
      if (b.min_value >= 0) {
        return MakeBound(0, b.max_value);
      }
      if (a.min_value >= 0) {
        return MakeBound(0, a.max_value);
      }
      return Everything(op->type);
    }
  }

272 273 274 275 276 277 278 279 280 281 282 283 284
  std::function<void()> EnterConstraint(const Expr& constraint) {
    std::vector<BoundInfo> info = DetectBoundInfo(constraint);
    if (info.size() == 0) return nullptr;
    size_t old_size = additional_info_.size();
    additional_info_.insert(additional_info_.end(), info.begin(), info.end());
    size_t new_size = old_size + info.size();
    auto frecover = [old_size, new_size, this]() {
      CHECK_EQ(additional_info_.size(), new_size);
      additional_info_.resize(old_size);
    };
    return frecover;
  }

285 286 287
 private:
  // internal variable map
  std::unordered_map<Var, Entry, ExprHash, ExprEqual> var_map_;
288 289
  // additional bound info
  std::vector<BoundInfo> additional_info_;
290 291
  // constants: the limit value means umlimited
  // NOTE: kNegInf/kPosInf are used to represent infinity.
292 293
  static const constexpr int64_t kNegInf = ConstIntBound::kNegInf;
  static const constexpr int64_t kPosInf = ConstIntBound::kPosInf;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  static_assert(-kNegInf == kPosInf, "invariant of inf");
  // internal helper functions
  /*!
   * \brief Get boundary of binary op who are monotonic wrt to one argument.
   * \param param a The entry of the left operand.
   * \param param a The entry of the right operand.
   * \param op The operator.
   * \tparam F the operator function type.
   * \return The result.
   */
  template<typename F>
  static Entry BinaryOpBoundry(Entry a, Entry b, const F& op) {
    Entry ret;
    // The boundary point must be shihft of the original boundary.
    int64_t v1 = op(a.min_value, b.min_value);
    int64_t v2 = op(a.max_value, b.max_value);
    int64_t v3 = op(a.min_value, b.max_value);
    int64_t v4 = op(a.max_value, b.min_value);
    ret.min_value = std::min(std::min(std::min(v1, v2), v3), v4);
    ret.max_value = std::max(std::max(std::max(v1, v2), v3), v4);
    return ret;
  }
  /*!
   * \brief Compute x + y, aware of inf.
   * \param x The left operand.
   * \param y The right operand.
   * \return the result.
   */
  static int64_t InfAwareAdd(int64_t x, int64_t y) {
    if (x == kPosInf) {
      CHECK(y != kNegInf);
      return kPosInf;
    }
    if (x == kNegInf) {
      CHECK(y != kPosInf);
      return kNegInf;
    }
    if (y == kPosInf || y == kNegInf) return y;
    if (WillOverflow<Add>(x, y, kNegInf, kPosInf)) {
      if (x > 0) return kPosInf;
      return kNegInf;
    }
    return x + y;
  }
  /*!
   * \brief Compute x * y, aware of inf.
   * \param x The left operand.
   * \param y The right operand.
   * \return the result.
   */
  static int64_t InfAwareMul(int64_t x, int64_t y) {
    if (!WillOverflow<Mul>(x, y, kNegInf, kPosInf)) return x * y;
    if ((x > 0 && y > 0) || (x < 0 && y < 0)) return kPosInf;
    return kNegInf;
  }
  /*!
   * \brief Compute x / y, aware of inf.
   * \param x The left operand.
   * \param y The right operand.
   * \return the result.
   */
  static int64_t InfAwareDiv(int64_t x, int64_t y) {
    CHECK_NE(y, 0);
    if (x == kPosInf || x == kNegInf) {
      if (y > 0) return x;
      return -x;
    }
    return x / y;
  }
  /*!
   * \brief Compute x / y, aware of inf.
   * \param x The left operand.
   * \param y The right operand.
   * \return the result.
   */
  static int64_t InfAwareRightShift(int64_t x, int64_t y) {
    if (x == kPosInf || x == kNegInf) return x;
    return x >> y;
  }
  /*!
   * \brief Make a new bound entry.
   */
  static Entry MakeBound(int64_t min_value, int64_t max_value) {
    Entry e;
    e.min_value = min_value;
    e.max_value = max_value;
    return e;
  }
  /*!
   * \brief Create union of two sets.
   * \param a The left operand.
   * \param b the right operand.
   */
  static Entry Union(Entry a, Entry b) {
    Entry ret;
    ret.min_value = std::min(a.min_value, b.min_value);
    ret.max_value = std::max(a.max_value, b.max_value);
    return ret;
  }
  /*!
   * \brief Create intersect of two sets.
   * \param a The left operand.
   * \param b the right operand.
   */
  static Entry Intersect(Entry a, Entry b) {
    Entry ret;
    ret.min_value = std::max(a.min_value, b.min_value);
    ret.max_value = std::min(a.max_value, b.max_value);
    return ret;
  }
  /*!
   * \brief return everything dtype can represent.
   * \param dtype The data type.
   * \return Bound that represent everything dtype can represent.
   */
  static Entry Everything(Type dtype) {
    if (!dtype.is_int() && !dtype.is_uint()) {
      return MakeBound(kNegInf, kPosInf);
    }
    Entry ret;
    int64_t vbits = dtype.bits() - static_cast<int>(dtype.is_int());
    if (dtype.is_uint()) {
      ret.min_value = 0;
    } else {
      if (vbits >= 63) {
        ret.min_value = kNegInf;
      } else {
        ret.min_value = -(static_cast<int64_t>(1) << vbits);
      }
    }
    if (vbits >= 63) {
      ret.max_value = kPosInf;
    } else {
      ret.max_value = (static_cast<int64_t>(1) << vbits) - 1;
    }
    return ret;
  }
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

  /*!
   * \brief Detect additional constant bound from cond, if any
   * \param cond The constraint condition.
   * \return List of detected bounds.
   */
  static std::vector<BoundInfo> DetectBoundInfo(const Expr& cond) {
    PVar<Expr> x, y;
    PVar<Integer> c;
    // NOTE: canonical form always use <= or <
    if ((c <= x).Match(cond)) {
      return {BoundInfo(x.Eval(), MakeBound(c.Eval()->value, kPosInf))};
    }
    if ((c < x).Match(cond)) {
      return {BoundInfo(x.Eval(), MakeBound(c.Eval()->value + 1, kPosInf))};
    }
    if ((x <= c).Match(cond)) {
      return {BoundInfo(x.Eval(), MakeBound(kNegInf, c.Eval()->value))};
    }
    if ((x < c).Match(cond)) {
      return {BoundInfo(x.Eval(), MakeBound(kNegInf, c.Eval()->value - 1))};
    }
    if ((x && y).Match(cond)) {
      auto ret1 = DetectBoundInfo(x.Eval());
      auto ret2 = DetectBoundInfo(y.Eval());
      ret1.insert(ret1.end(), ret2.begin(), ret2.end());
      return ret1;
    }
    return {};
  }
461 462 463 464
};

ConstIntBound ConstIntBoundAnalyzer::operator()(const Expr& expr) {
  Entry ret = impl_->VisitExpr(expr);
465
  return ConstIntBound(ret.min_value, ret.max_value);
466 467 468 469 470 471 472 473 474 475 476 477 478
}

void ConstIntBoundAnalyzer::Update(const Var& var,
                                   const ConstIntBound& info,
                                   bool override) {
  impl_->Update(var, info, override);
}

void ConstIntBoundAnalyzer::Bind(const Var& var, const Range& range) {
  impl_->Bind(var, range);
}

std::function<void()> ConstIntBoundAnalyzer::EnterConstraint(const Expr& constraint) {
479
  return impl_->EnterConstraint(constraint);
480 481 482 483 484 485 486 487 488 489 490 491
}

ConstIntBoundAnalyzer::ConstIntBoundAnalyzer(Analyzer* parent)
    : impl_(new Impl()) {
}

ConstIntBoundAnalyzer::~ConstIntBoundAnalyzer() {
  delete impl_;
}

}  // namespace arith
}  // namespace tvm