quantize.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23
#pylint: disable=unused-argument
"""Automatic quantization toolkit."""
from __future__ import absolute_import
import numpy as np

from . import _quantize
from .. import expr as _expr
24
from .. import module as _module
Zhi committed
25
from .. import analysis as _analysis
26
from .. import transform as _transform
27 28 29 30 31 32 33 34
from .. import op as _op
from ... import make as _make
from ..base import NodeBase, register_relay_node


class QAnnotateKind(object):
    """Denote the kind of annotation field, corresponding
    to different nbit configure."""
35
    IDENTITY = 0
36 37 38 39 40 41 42 43 44 45 46
    INPUT = 1
    WEIGHT = 2
    ACTIVATION = 3


def kind2str(kind):
    """Convert a `QAnnotateKind` to string"""
    str_map = {
        QAnnotateKind.INPUT: "input",
        QAnnotateKind.WEIGHT: "weight",
        QAnnotateKind.ACTIVATION: "activation",
47
        QAnnotateKind.IDENTITY: "identity"
48 49 50 51 52
    }
    assert kind in str_map
    return str_map[kind]


53 54 55 56 57 58
def _forward_op(ref_call, args):
    """forward the operator of ref_call with provided arguments"""
    return _expr.Call(
        ref_call.op, args, ref_call.attrs, ref_call.type_args)


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
@register_relay_node("relay.quantize.QConfig")
class QConfig(NodeBase):
    """Configure the quantization behavior by setting config variables.

    Note
    ----
    This object is backed by node system in C++, with arguments that can be
    exchanged between python and C++.

    Do not construct directly, use qconfig instead.

    The fields that are backed by the C++ node are immutable once an instance
    is constructed. See _node_defaults for the fields.
    """

    _node_defaults = {
        "nbit_input": 8,
        "nbit_weight": 8,
        "nbit_activation": 32,
        "dtype_input": "int8",
        "dtype_weight": "int8",
        "dtype_activation": "int32",
        "global_scale": 8.0,
82
        "skip_conv_layers": [0],
83
        "do_simulation": False,
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        "round_for_shift": True,
        "debug_enabled_ops": None,
    }

    # pylint: disable=no-member
    def __init__(self, handle):
        """Initialize the function with handle

        Parameters
        ----------
        handle : SymbolHandle
            the handle to the underlying C++ Symbol
        """
        super(QConfig, self).__init__(handle)
        self.handle = handle

    def guard(self, ref_call):
101
        """Return true if op is enabled, otherwise return false"""
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        op_name = ref_call.op.name
        if self.debug_enabled_ops is not None:
            name_list = [x.value for x in self.debug_enabled_ops]
            if op_name not in name_list:
                return False
        return True

    def get_nbit_by_kind(self, kind):
        name = kind2str(kind)
        return getattr(self, 'nbit_' + name)

    def get_dtype_by_kind(self, kind):
        name = kind2str(kind)
        return getattr(self, 'dtype_' + name)

    def __enter__(self):
        # pylint: disable=protected-access
        _quantize._EnterQConfigScope(self)
        return self

    def __exit__(self, ptype, value, trace):
        _quantize._ExitQConfigScope(self)

    def __setattr__(self, name, value):
        if name in QConfig._node_defaults:
            raise AttributeError(
                "'%s' object cannot set attribute '%s'" % (str(type(self)), name))
        return super(QConfig, self).__setattr__(name, value)


def current_qconfig():
    """Get the current quantization configuration."""
    return _quantize._GetCurrentQConfig()

136

137 138 139 140 141 142 143 144 145 146 147
def qconfig(**kwargs):
    """Configure the quantization behavior by setting config variables.

    Parameters
    ---------
    nbit_dict: dict of QAnnotateKind -> int
        Number of bit for every kind of annotate field.

    global_scale: float
        The global scale for calibration.

148
    skip_conv_layers: list
149
        Specifying which layers to be skipped. Provide a list of indices
150 151 152 153
        that indicate which conv2d layers to leave untouched. Start from 0.

    do_simulation: boolean
        Whether to do simulation with float operation only.
154

155 156 157
    round_for_shift: boolean
        Whether to add bias for rounding during shift.

158 159 160 161
    debug_enabled_ops: None or list of str
        Partially quantize specified operators for debugging. The default value
        is None, which means will try to call all operartors' annotate rewrite
        function.
162

163 164 165 166 167 168 169 170 171 172
    Returns
    -------
    config: QConfig
        The quantization configuration
    """
    node_args = {k: v if k not in kwargs else kwargs[k]
                 for k, v in QConfig._node_defaults.items()}
    return _make.node("relay.quantize.QConfig", **node_args)


173 174 175
class QuantizeContext(object):
    """An internal used global context object for annotation,
    for putting some state variables like `conv2d_counter`."""
176 177 178 179 180
    Current = None

    def __init__(self):
        self.qnode_map = dict()
        self._conv2d_counter = 0
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        self._stop_quantize = False

    def check_to_skip(self, ref_call):
        """Check the index of conv2d layer to decide whether to
        skip the current operator."""
        if self._stop_quantize:
            return True

        if current_qconfig().skip_conv_layers is not None:
            # check skip conv layers
            skipped_indices = [int(x) for x in current_qconfig().skip_conv_layers]
            if self._conv2d_counter in skipped_indices:
                if ref_call.op.name == 'nn.conv2d':
                    self._conv2d_counter += 1
                return True
            if ref_call.op.name == 'nn.conv2d':
                self._conv2d_counter += 1

        return False

    def stop_quantize(self):
        self._stop_quantize = True

    def reset(self):
        self._conv2d_counter = 0
        self._stop_quantize = False
207 208

    def __enter__(self):
209
        self.reset()
210 211 212 213
        return self

    def __exit__(self, ptype, value, traceback):
        pass
214 215


216
def quantize_context():
217
    """Get the global singleton scope"""
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    if QuantizeContext.Current is None:
        QuantizeContext.Current = QuantizeContext()
    return QuantizeContext.Current


def partition():
    """Partition graph into small low-precision sections by `cast_hint` and
    `stop_fusion`.

    Returns
    -------
    ret: tvm.relay.Pass
        The registered pass for VTA rewrite.
    """
    return _quantize.QuantizePartition()


def annotate():
    """Given a float32 graph, this pass will rewrite the graph and return
    a graph which simulates the error brought by the current quantization
    scheme.

    Returns
    -------
    ret: tvm.relay.Pass
        The registered pass for quantization annotation.
    """
    return _quantize.QuantizeAnnotate()
246 247


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
def collect_stats(graph):
    """Given an annotated graph, create a profile graph to collect profile data from the
    calibration dataset. This pass collects simulated_quantize op input into a tuple.
    Simulated_quantize ops are rewritten to identity mode. The tuple is the output of the profile
    graph.

    Parameters
    ----------
    graph: Function
        The simulation graph after annotation.

    Returns
    -------
    ret: Function
        The profile graph which outputs a tuple of profile data.
    """
    return _quantize.CollectStats(graph)


def calibrate(graph, mod=None, ctx=None, weight_scales='power2', scales=None):
268 269 270 271 272 273 274 275 276
    """The calibrate procedure will try to calculate the content of
    dom_scale, nbit, clip_min, clip_max for every `simulated_quantize`
    operator.

    Parameters
    ---------
    graph: Function
        The simulation graph after annotation.

277 278 279 280 281
    mod: tvm.relay.Module
        The module where calibration happens on.

    ctx: tvm.relay.PassContext
        The pass context used for calibration.
282

283 284 285 286 287 288 289 290 291 292
    weight_scales: 'power2' or 'max'.
        The way to calculate scales for weights (annotated with QAnnotateKind.WEIGHT).
        power2: Find the maximum of the absolute value of the tensor, and then round up to power
        of two.
        max: Find the maximum of the absolute value of the tensor.

    scales: List[float]
        Pre-calculated scales for input and activations. Length and the order of elements of the
        scales list should match the output tuple of the profile graph created by collect_stats.

293 294 295 296 297 298 299 300 301 302
    Returns
    -------
    ret: Function
        The graph after calibration
    """
    def power2_scale(arr):
        """calculate weight scale with nearest mode-2 scale"""
        val = np.amax(np.abs(arr.asnumpy()))
        return 2**np.math.ceil(np.math.log(val, 2)) if val > 0 else 1.0

303 304 305 306 307 308 309
    def max_scale(arr):
        """calculate weight scale with maximum absolute value"""
        val = np.amax(np.abs(arr.asnumpy()))
        return val

    scale_idx = 0

310 311 312 313 314 315
    cfg = current_qconfig()
    const_params = {}
    quantize_op = _op.get("relay.op.annotation.simulated_quantize")

    def visit_func(expr):
        """Internal visit function"""
316
        nonlocal scale_idx
317 318 319 320 321 322 323
        if isinstance(expr, _expr.Call) and expr.op == quantize_op:
            _, ndom_scale, nclip_min, nclip_max = expr.args
            attrs = expr.attrs
            kind = attrs.kind
            nbit = cfg.get_nbit_by_kind(kind)

            valid_bit = nbit - attrs.sign
324 325 326 327
            if kind in [QAnnotateKind.WEIGHT]:
                if all([isinstance(arg, _expr.Constant)
                        for arg in [ndom_scale, nclip_min, nclip_max]]):
                    return
328 329
                var = expr.args[0]
                assert isinstance(var, _expr.Constant)
330 331 332 333 334 335 336 337 338
                if weight_scales == 'max':
                    scale = max_scale(var.data)
                elif weight_scales == 'power2':
                    scale = power2_scale(var.data)
                else:
                    raise ValueError('{} not supported'.format(weight_scales))
            elif scales is not None:
                scale = scales[scale_idx]
                scale_idx += 1
339 340 341 342 343 344 345 346 347 348 349
            else:
                scale = cfg.global_scale

            def _make_const(val):
                return _expr.const(val, 'float32')

            valid_range = 2**valid_bit
            const_params[ndom_scale] = _make_const(scale / valid_range)
            const_params[nclip_min] = _make_const(- (valid_range - 1))
            const_params[nclip_max] = _make_const((valid_range - 1))

Zhi committed
350
    _analysis.post_order_visit(graph, visit_func)
351 352
    ret = _expr.bind(graph, const_params)
    return ret
353 354


355 356 357 358 359
def realize():
    """The realize pass will transform the simulated quantized graph, which
    actually computes with float32, to a real low-bit integer graph. It will
    replace the `simulated_quantize` with several fine-grained operators like
    add, multiply, and shift as much as possible for better performance.
360 361 362

    Returns
    -------
363 364
    ret: tvm.relay.Pass
        The registered pass for quantization realization.
365
    """
366
    return _quantize.QuantizeRealize()
367 368


369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
def _bind_params(func, params):
    """Bind the params to the expression.
    """
    name_dict = {}
    for arg in func.params:
        name = arg.name_hint
        if name in name_dict:
            name_dict[name] = None
        else:
            name_dict[name] = arg
    bind_dict = {}
    for k, v in params.items():
        if k not in name_dict:
            continue
        arg = name_dict[k]
        if arg is None:
            raise ValueError("Multiple args in the function have name %s" % k)
        bind_dict[arg] = _expr.const(v)
    return _expr.bind(func, bind_dict)
388 389


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
def prerequisite_optimize(graph, params=None):
    """ Prerequisite optimization passes for quantization. Perform
    "SimplifyInference", "FoldScaleAxis", "FoldConstant", and
    "CanonicalizeOps" optimization before quantization. """
    optimize = _transform.Sequential([_transform.SimplifyInference(),
                                      _transform.FoldConstant(),
                                      _transform.FoldScaleAxis(),
                                      _transform.CanonicalizeOps(),
                                      _transform.FoldConstant()])

    if params:
        graph = _bind_params(graph, params)

    mod = _module.Module.from_expr(graph)
    with _transform.PassContext(opt_level=3):
        mod = optimize(mod)
    return mod["main"]


409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
def quantize(graph, params=None, dataset=None):
    """ The quantization procedure. Before running the three main
    procedure of quantization, "annotate", "calibrate" and "realize"
    , we need to do "SimplifyInference", "FoldScaleAxis", "FoldConstant"
    first for optimizing.

    Parameters
    ---------
    graph: Function
        The original graph.

    params : dict of str to NDArray
        Input parameters to the graph that do not change
        during inference time. Used for constant folding.

    dataset: list of dict of Var -> NDArray
        The calibration dataset.

    Returns
    -------
    ret: Function
        The graph after quantization
    """
432
    graph = prerequisite_optimize(graph, params)
433 434 435 436

    mod = _module.Module.from_expr(graph)
    calibrate_pass = _transform.function_pass(calibrate, opt_level=1,
                                              name="QuantizeCalibrate")
437 438 439 440 441 442
    quant_passes = [partition(),
                    annotate(),
                    calibrate_pass]
    if not current_qconfig().do_simulation:
        quant_passes.append(realize())
    quant_passes.append(_transform.FoldConstant())
443 444 445 446 447
    quantize_seq = _transform.Sequential(quant_passes)
    with _transform.PassContext(opt_level=3,
                                required_pass=["QuantizeAnnotate",
                                               "QuantizeCalibrate",
                                               "QuantizeRealize"]):
448 449
        with quantize_context():
            mod = quantize_seq(mod)
450

451
    return mod["main"]