test_forward.py 67.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
# pylint: disable=import-self, invalid-name, unused-argument
"""
Tensorflow testcases
====================
This article is a test script to test tensorflow operator with Relay.
"""
from __future__ import print_function
import numpy as np
import tvm
from tvm import relay
import tensorflow as tf
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import graph_util
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.ops import init_ops

39
from distutils.version import LooseVersion
40 41 42 43 44 45 46 47 48 49
import tvm.relay.testing.tf as tf_testing

#######################################################################
# Generic run functions for TVM & tensorflow
# ------------------------------------------
def convert_to_list(x):
    if not isinstance(x, list):
        x = [x]
    return x

50 51
def run_tvm_graph(graph_def, input_data, input_node, num_output=1,
                  target='llvm', out_names=None, opt_level=3):
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    """ Generic function to compile on relay and execute on tvm """
    input_data = convert_to_list(input_data)
    input_node = convert_to_list(input_node)

    layout = None
    if target == "cuda":
        layout = "NCHW"
    target_host = 'llvm'

    if isinstance(input_data, list):
        shape_dict = {}
        dtype_dict = {}
        for i, e in enumerate(input_node):
            shape_dict[e] = input_data[i].shape
            dtype_dict[e] = input_data[i].dtype
    else:
        shape_dict = {input_node: input_data.shape}
        dtype_dict = {input_node: input_data.dtype}
70

71 72 73 74
    sym, params = relay.frontend.from_tensorflow(graph_def,
                                                 layout=layout,
                                                 shape=shape_dict,
                                                 outputs=out_names)
75
    with relay.build_config(opt_level=opt_level):
76 77 78 79 80 81 82 83 84 85 86 87 88
        graph, lib, params = relay.build(sym, target, params=params)

    ctx = tvm.context(target, 0)
    from tvm.contrib import graph_runtime
    m = graph_runtime.create(graph, lib, ctx)
    # set inputs
    for i, e in enumerate(input_node):
        m.set_input(e, tvm.nd.array(input_data[i].astype(input_data[i].dtype)))

    m.set_input(**params)
    # execute
    m.run()
    # get outputs
89 90
    assert out_names is None or num_output == len(out_names), (
        "out_names: {} num_output: {}".format(out_names, num_output))
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    tvm_output_list = []
    for i in range(0, num_output):
        tvm_output = m.get_output(i)
        tvm_output_list.append(tvm_output.asnumpy())
    return tvm_output_list

def run_tf_graph(sess, input_data, input_node, output_node):
    """ Generic function to execute tensorflow """
    input_data = convert_to_list(input_data)
    input_node = convert_to_list(input_node)
    output_node = convert_to_list(output_node)

    tensor = [0] * len(output_node)
    for i in range(len(output_node)):
        tensor[i] = sess.graph.get_tensor_by_name(output_node[i])

    input_dict = {}
    for i, e in enumerate(input_node):
        input_dict[e] = input_data[i]

    output_data = sess.run(tensor, input_dict)
    return output_data


115 116
def compare_tf_with_tvm(in_data, in_name, out_name, init_global_variables=False,
                        no_gpu=False, opt_level=3):
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    """Generic function to generate and compare tensorflow and TVM output"""

    out_name = convert_to_list(out_name)
    out_node = [0]*len(out_name)
    for i in range(len(out_name)):
        out_node[i] = out_name[i].split(':')[0] if ":" in out_name[i] else out_name[i]

    in_data = convert_to_list(in_data)
    in_name = convert_to_list(in_name)
    in_node = [0]*len(in_name)
    for i in range(len(in_name)):
        in_node[i] = in_name[i].split(':')[0] if ":" in in_name[i] else in_name[i]
    with tf.Session() as sess:
        if init_global_variables:
            sess.run(variables.global_variables_initializer())
        final_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,
            sess.graph.as_graph_def(add_shapes=True),
            out_node,
            )
        tf_output = run_tf_graph(sess, in_data, in_name, out_name)

        for device in ["llvm", "cuda"]:
            ctx = tvm.context(device, 0)
            if not ctx.exist:
                print("Skip because %s is not enabled" % device)
                continue
            if no_gpu and device == 'cuda':
                continue

147 148 149
            tvm_output = run_tvm_graph(final_graph_def, in_data, in_node,
                                       target=device, out_names=out_name,
                                       num_output=len(out_name), opt_level=opt_level)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            # since the names from tensorflow and relay runs are not exactly same,
            # first len(tf_output) will be compared
            for i in range(len(tf_output)):
                tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)

        sess.close()

def is_gpu_available():
    from tensorflow.python.client import device_lib
    local_device_protos = device_lib.list_local_devices()
    gpu_list = [x.name for x in local_device_protos if x.device_type == 'GPU']
    if len(gpu_list) > 0:
        print("Tensorflow GPU:", gpu_list)
        return True
    else:
        return False

#######################################################################
# Pooling
# -------
def _test_pooling_iteration(input_shape, **kwargs):
    """ One iteration of pool operation with given shapes and attributes """

    x = -np.arange(
        np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=input_shape, dtype='float32')
        nn_ops.pool(in_data, **kwargs)

        if kwargs['pooling_type'] == 'MAX':
            out_name = 'max_pool:0'
        else:
            out_name = 'avg_pool:0'

        compare_tf_with_tvm(x, 'Placeholder:0', out_name)

def _test_pooling(input_shape, **kwargs):
    _test_pooling_iteration(input_shape, **kwargs)

190
    if is_gpu_available() and (len(input_shape) == 4):
191
        input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)]
192
        kwargs['data_format'] = 'NCHW'
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        _test_pooling_iteration(input_shape, **kwargs)

def test_forward_pooling():
    """ Pooling """

    for pool_type in ['AVG', 'MAX']:
            _test_pooling(input_shape=[2, 9, 10, 2],
                         window_shape=[1, 1],
                         padding='SAME',
                         pooling_type=pool_type,
                         dilation_rate=[1, 1],
                         strides=[1, 1])

            _test_pooling(input_shape=[2, 10, 9, 2],
                         window_shape=[1, 1],
                         padding='SAME',
                         pooling_type=pool_type,
                         dilation_rate=[1, 1],
                         strides=[1, 1])

            _test_pooling(input_shape=[2, 9, 10, 2],
                         window_shape=[2, 1],
                         padding='SAME',
                         pooling_type=pool_type,
                         dilation_rate=[1, 1],
                         strides=[1, 1])

            _test_pooling(input_shape=[2, 10, 9, 2],
                         window_shape=[2, 3],
                         padding='SAME',
                         pooling_type=pool_type,
                         dilation_rate=[1, 1],
                         strides=[2, 1])

227 228 229 230 231 232 233 234 235 236 237 238 239
            # Tests involving SpaceToBatchND
            _test_pooling(input_shape=[1, 1, 2, 1],
                         window_shape=[1, 1],
                         padding='VALID',
                         pooling_type=pool_type,
                         dilation_rate=[1, 2])

            _test_pooling(input_shape=[1, 2, 1],
                         window_shape=[1],
                         padding='VALID',
                         pooling_type=pool_type,
                         dilation_rate=[2])

240 241 242 243 244 245 246 247
#######################################################################
# Convolution
# -----------

def _test_convolution(tensor_in_sizes, filter_in_sizes,
                      dilations, strides, padding, data_format):
    """ One iteration of convolution with given shapes and attributes """

248 249
    total_size_1 = np.prod(tensor_in_sizes)
    total_size_2 = np.prod(filter_in_sizes)
250 251 252 253 254 255 256 257
    # Initializes the input tensor with array containing incrementing
    # numbers from 1.
    data_array = [f * 1.0 for f in range(1, total_size_1 + 1)]
    filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)]

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32')
        in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32')
258 259 260 261 262 263
        if data_format == 'NHWC':
            strides = [1] + strides + [1]
            dilations = [1] + dilations + [1]
        else:
            strides = [1, 1] + strides
            dilations = [1, 1] + dilations
264 265 266 267

        nn_ops.conv2d(in_data,
                      in_filter,
                      strides=strides,
268
                      dilations=dilations,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                      padding=padding,
                      data_format=data_format)

        compare_tf_with_tvm(np.reshape(data_array, tensor_in_sizes).astype('float32'),
                            'Placeholder:0', 'Conv2D:0')

def test_forward_convolution():
    if is_gpu_available():
        _test_convolution([4, 176, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NCHW')
        _test_convolution([4, 19, 17, 17], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NCHW')
        _test_convolution([4, 124, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NCHW')
        _test_convolution([4, 12, 17, 17], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NCHW')

    _test_convolution([4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC')
    _test_convolution([4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NHWC')
    _test_convolution([4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NHWC')
    _test_convolution([4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NHWC')

#######################################################################
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
# SpaceToBatchND
# --------------
def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)

    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        out = tf.space_to_batch_nd(in_data, block_shape, paddings)

        compare_tf_with_tvm(data, in_data.name, out.name)

def test_forward_space_to_batch_nd():
    # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/space-to-batch-n-d
    _test_space_to_batch_nd(
        input_shape=[1, 2, 2, 1],
        block_shape=[2, 2],
        paddings=[[0, 0], [0, 0]]
    )

    _test_space_to_batch_nd(
        input_shape=[1, 2, 2, 3],
        block_shape=[2, 2],
        paddings=[[0, 0], [0, 0]]
    )

    _test_space_to_batch_nd(
        input_shape=[1, 4, 4, 1],
        block_shape=[2, 2],
        paddings=[[0, 0], [0, 0]]
    )

    _test_space_to_batch_nd(
        input_shape=[2, 2, 4, 1],
        block_shape=[2, 2],
        paddings=[[0, 0], [2, 0]],
        dtype='int64'
    )

    # pylint: disable=line-too-long
    # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/spacetobatch_op_test.py
    _test_space_to_batch_nd(
        input_shape=[2, 3],
        block_shape=[2],
        paddings=[[1, 0]],
        dtype='float32'
    )

    _test_space_to_batch_nd(
        input_shape=[2, 3, 2],
        block_shape=[2],
        paddings=[[1, 0]],
        dtype='float64'
    )

#######################################################################
# BatchToSpaceND
# --------------
def _test_batch_to_space_nd(input_shape, block_shape, crops, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)

    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        out = tf.batch_to_space_nd(in_data, block_shape, crops)

        compare_tf_with_tvm(data, in_data.name, out.name)

def test_forward_batch_to_space_nd():
    # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d
    _test_batch_to_space_nd(
        input_shape=[4, 1, 1, 1],
        block_shape=[2, 2],
        crops=[[0, 0], [0, 0]]
    )

    _test_batch_to_space_nd(
        input_shape=[4, 1, 1, 3],
        block_shape=[2, 2],
        crops=[[0, 0], [0, 0]]
    )

    _test_batch_to_space_nd(
        input_shape=[4, 2, 2, 1],
        block_shape=[2, 2],
        crops=[[0, 0], [0, 0]]
    )

    _test_batch_to_space_nd(
        input_shape=[8, 1, 3, 1],
        block_shape=[2, 2],
        crops=[[0, 0], [2, 0]],
        dtype='int64'
    )

    # pylint: disable=line-too-long
    # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/batchtospace_op_test.py
    _test_batch_to_space_nd(
        input_shape=[18, 2, 1, 2],
        block_shape=[2, 3],
        crops=[[1, 1], [0, 0]],
        dtype='float32'
    )

    _test_batch_to_space_nd(
        input_shape=[20, 5, 8, 7],
        block_shape=[2, 2],
        crops=[[1, 1], [1, 1]],
        dtype='float64'
    )

#######################################################################
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
# Reshape
# -------

def _test_reshape(data, out_shape):
    """ One iteration of reshape operation with given data and out shape """

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        array_ops.reshape(in_data, out_shape)

        compare_tf_with_tvm(data, 'Placeholder:0', 'Reshape:0')

def test_forward_reshape():
    _test_reshape(np.arange(6.0), [2, 3])
    _test_reshape(np.arange(6), [-1, 2])
    _test_reshape(np.arange(6), [3, -1])
    _test_reshape(np.arange(6), [-1])

#######################################################################
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
# DepthToSpace
# ------------

def _test_depthtospace(data, block_size):
    """ One iteration of depth_to_space operation with given data and block size """

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        array_ops.depth_to_space(in_data, block_size)

        compare_tf_with_tvm(data, 'Placeholder:0', 'DepthToSpace:0')

def test_forward_depthtospace():
    _test_depthtospace(np.random.normal(size=[1, 32, 32, 4]), 2)
    _test_depthtospace(np.random.normal(size=[1, 16, 8, 32]), 4)


434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
#######################################################################
# Squeeze
# -------

def _test_squeeze(data, squeeze_dims=None):
    """ One iteration of squeeze """

    if squeeze_dims is None:
        squeeze_dims = []

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)

        if squeeze_dims:
            array_ops.squeeze(in_data, squeeze_dims)
        else:
            array_ops.squeeze(in_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'Squeeze:0')

def test_forward_squeeze():
    """ Squeeze """

    # Nothing to squeeze.
    _test_squeeze(np.arange(2).reshape((2)))
    _test_squeeze(np.arange(6).reshape((2, 3)))

    # Squeeze the middle element away.
    _test_squeeze(np.arange(4).reshape((2, 1, 2)))

    # Squeeze on both ends.
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)))

    # Positive squeeze dim index.
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [2, 4])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0, 4, 2])

    # Negative squeeze dim index.
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-1])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5, -1])

#######################################################################
# ConcatV2
# --------

def _test_concat_v2(data, dim):
    """ One iteration of ConcatV2 """

    with tf.Graph().as_default():
        gen_array_ops._concat_v2(data, dim)

        compare_tf_with_tvm(data, ['ConcatV2/values_0:0', 'ConcatV2/values_1:0'],
                            'ConcatV2:0')

def _test_forward_concat_v2():
    t1 = np.array([])
    t2 = np.array([])
    _test_concat_v2([t1, t2], 0)

    t1 = np.array([[1, 2, 3], [4, 5, 6]])
    t2 = np.array([[7, 8, 9], [10, 11, 12]])

    _test_concat_v2([t1, t2], 1)

#######################################################################
# Sigmoid
# -------

def _test_sigmoid(data):
    """ One iteration of sigmoid """

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        sigmoid_out = math_ops.sigmoid(in_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'Sigmoid:0')

def test_forward_sigmoid():
    """ Sigmoid """

    _test_sigmoid(np.random.uniform(size=(3, 4, 4, 3)).astype('float32'))

#######################################################################
# Argmin/Argmax
# -------------

def _test_argx(func, data, **kwargs):

    with tf.Graph().as_default():
        inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0")
        func(inp, name="argx0", output_type=tf.int32, **kwargs)

        compare_tf_with_tvm(data, 'c0:0', 'argx0:0')

def test_forward_argminmax():
    for axis in [None,0,1,2]:
        data = np.random.uniform(size=(8,4,9)).astype('float32')
        _test_argx(tf.argmax, data=data, axis=axis)
        _test_argx(tf.argmin, data=data, axis=axis)

#######################################################################
# Reduce
# ------

def _test_reduce(func, data, **kwargs):
    """ One iteration of a reduce operation"""

    with tf.Graph().as_default():
        inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0")
        func(inp, name="reducex0", **kwargs)

        compare_tf_with_tvm(data, 'c0:0', 'reducex0:0')

def test_forward_reduce():
    data = np.random.uniform(size=(8,4,9)).astype('float32')
    _test_reduce(tf.reduce_sum, data=data)
    _test_reduce(tf.reduce_sum, data=data, axis=0)
    _test_reduce(tf.reduce_sum, data=data, axis=(0,1))


#######################################################################
# Variable
# --------

def _test_variable(data):
    """ One iteration of a variable """

    tf.reset_default_graph()
    input_op = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
    input_tensor = array_ops.reshape(input_op, data.shape)

    size = input_tensor.shape.dims[1]
    with variable_scope.variable_scope("linear", reuse=None):
        w = variable_scope.get_variable(
            "w", shape=[size, size], dtype=input_tensor.dtype)
    math_ops.matmul(input_tensor, w)

    compare_tf_with_tvm(data, 'Placeholder:0', 'MatMul:0', init_global_variables=True)

def test_forward_variable():
    """Variable type op test"""
    _test_variable(np.random.uniform(size=(32, 100)).astype('float32'))


#######################################################################
# StridedSlice
# ------------

def _test_stridedslice(ip_shape, begin, end, stride, dtype,
                             begin_mask=0, end_mask=0, new_axis_mask=0,
                             shrink_axis_mask=0, ellipsis_mask=0):
    """ One iteration of a Stridedslice """

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.strided_slice(in_data, begin, end, stride, begin_mask=begin_mask,
                         end_mask=end_mask, new_axis_mask=new_axis_mask,
                         shrink_axis_mask=shrink_axis_mask,
                         ellipsis_mask=ellipsis_mask, name="strided_slice")
    np_data = np.random.uniform(size=ip_shape).astype(dtype)

    compare_tf_with_tvm(np_data, 'in_data:0', 'strided_slice:0')

def test_forward_stridedslice():
    '''test StridedSlice'''

602
    _test_stridedslice((2), [1], [1], [1], 'float32', shrink_axis_mask=1)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    _test_stridedslice((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], 'float32')
    _test_stridedslice((3, 4, 3), [1, 0], [4, 3], [2, 1], 'float32', ellipsis_mask=8)
    _test_stridedslice((3, 4, 3), [1, 0], [4, 2], [2, 1], 'float32', ellipsis_mask=2)
    _test_stridedslice((3, 4, 5, 3), [1, 0], [4, 2], [2, 1], 'float32', ellipsis_mask=2)
    _test_stridedslice((3, 4, 5, 3), [1, 0, 1], [4, 2, 2], [2, 1, 1], 'float32', ellipsis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 2], [2, 1, 1], 'float32', new_axis_mask=5)
    _test_stridedslice((3, 4, 3), [1, 1, 1], [4, 4, 1], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=4)
    _test_stridedslice((6, 4, 5), [1, 1, 1], [6, 3, 4], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=5)
    _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=4, new_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=3)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 1], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=3)
    _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=2, new_axis_mask=2)
    _test_stridedslice((3,4), [1, 0], [4, 4], [1, 1], 'float32', shrink_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=2, new_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=1, new_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=2, new_axis_mask=1)
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0], [2, 3], [1, 1], 'float32', shrink_axis_mask=5, new_axis_mask=1)
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1],
                       'float32', shrink_axis_mask=5, new_axis_mask=1, ellipsis_mask=2, begin_mask=8, end_mask=8)
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1],
                       'float32', shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5)
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1],
                       'float32', shrink_axis_mask=16, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5)
    _test_stridedslice((3, 4, 5, 4, 5, 6), [1, 2, 0, -3], [4, 5, 3, 3], [2, 2, 1, 1],
                       'float32', shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5,
                       end_mask=8)


#######################################################################
632 633
# Gather, GatherV2
# ----------------
634 635

def _test_gather(ip_shape, indice_shape, indice_value, axis, dtype):
636
    """ One iteration of a GatherV2 """
637 638 639 640 641

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    indices = tf.placeholder("int32", indice_shape, name="indices")
    tf.gather(in_data, indices, axis=axis)
642
    np_data = np.random.uniform(1, 10, size=ip_shape).astype(dtype)
643 644 645 646 647 648 649 650 651 652 653 654 655

    def _fill_indices(indice_value):
        indices = np.array(ip_shape, dtype=dtype)
        if isinstance(indice_value, int):
            indices = np.array([indice_value], dtype='int32')
        else:
            indices = np.asarray(indice_value, dtype='int32')
        return indices
    np_indices = _fill_indices(indice_value)

    compare_tf_with_tvm([np_data, np_indices], ['in_data:0', 'indices:0'], 'GatherV2:0')

def test_forward_gather():
656
    '''test GatherV2 layer'''
657 658
    _test_gather((4,), (1,), 1, 0, 'int32')
    _test_gather((4,), (1,), 1, 0, 'float32')
659 660 661 662 663 664 665 666
    _test_gather((1, 4), (1,), [0], 0, 'int32')
    _test_gather((4,), (1, 2, 2), [[[1, 0],[0, 1]]], 0, 'float32')
    _test_gather((2, 2), (1, 2, 2), [[[1, 0],[0, 1]]], 0, 'int32')
    _test_gather((2, 2), (1, 2, 2), [[[1, 0],[0, 1]]], 1, 'int32')
    _test_gather((2, 2), (1, 2, 2), [[[1, 0],[0, 1]]], 0, 'float32')
    _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 0, 'int32')
    _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 2, 'int32')
    _test_gather((4, 3, 5, 6), (1, 4), [[2, 1, 0, 0]], 0, 'float32')
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

def _test_gather_v1(ip_shape, indice_shape, indice_value, dtype):
    """ One iteration of a Gather"""
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    indices = tf.placeholder("int32", indice_shape, name="indices")
    tf.gather(in_data, indices)
    np_data = np.random.uniform(size=ip_shape).astype(dtype)

    def _fill_indices(indice_value):
        indices = np.array(ip_shape, dtype=dtype)
        if isinstance(indice_value, int):
            indices = np.array([indice_value], dtype='int32')
        else:
            indices = np.asarray(indice_value, dtype='int32')
        return indices
    np_indices = _fill_indices(indice_value)

    compare_tf_with_tvm([np_data, np_indices], ['in_data:0', 'indices:0'], 'Gather:0')


def test_forward_gather_v1():
    '''test gather layer'''

    if tf.__version__ < LooseVersion('1.7'):
        _test_gather_v1((4,), (1, 2, 2), [[[1, 0], [0, 1]]], 'float32')
        _test_gather_v1((4,), (1,), 1, 'int32')
        _test_gather_v1((4,), (1,), 1, 'float32')
        _test_gather_v1((1, 4), (1,), [0], 'int32')
        _test_gather_v1((4,), (1, 2, 2), [[[1, 0], [0, 1]]], 'float32')
        _test_gather_v1((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 'int32')
        _test_gather_v1((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 'int32')
        _test_gather_v1((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 'float32')
        _test_gather_v1((3, 3, 3), (1, 1, 2), [[[1, 0]]], 'int32')
        _test_gather_v1((3, 3, 3), (1, 1, 2), [[[1, 0]]], 'int32')
        _test_gather_v1((4, 3, 5, 6), (1, 4), [[2, 1, 0, 0]], 'float32')


706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
#######################################################################
# Split
# -----

def _test_split(in_shape, axis, num_or_size_splits, dtype):
    np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype)

    """ One iteration of a Split """
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    num_split = len(num_or_size_splits) if isinstance(num_or_size_splits, list) else num_or_size_splits
    tf.split(in_data, num_or_size_splits, axis=axis)

    compare_tf_with_tvm([np_data], ['in_data:0'], [f'split:{n}' for n in range(num_split)])

    # and now test together with concat
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    splitted = tf.split(in_data, num_or_size_splits, axis=axis)
    tf.concat(splitted, axis)

    compare_tf_with_tvm([np_data], 'in_data:0', 'concat:0')

def test_forward_split():
    '''test split layer'''
    # rank 1
    _test_split((3,), 0, 1, 'float32')
    _test_split((3,), 0, 3, 'float32')
    _test_split((6,), 0, 3, 'float32')
    # rank 2
    _test_split((6, 2), 0, 3, 'float32')
    _test_split((2, 6), 1, 6, 'float32')
    # rank 3
    _test_split((6, 2, 4), 0, 2, 'int32')
    _test_split((2, 6, 4), 1, 3, 'float32')
    _test_split((2, 4, 6), 2, 1, 'float32')
    # rank 4
    _test_split((6, 1, 3, 5), 0, 3, 'float32')
    _test_split((1, 6, 3, 5), 1, 3, 'float32')
    _test_split((1, 3, 6, 5), 2, 3, 'float32')
    _test_split((1, 3, 5, 6), 3, 3, 'float32')
    # split along negative axis
    _test_split((6, 1, 3, 5), -4, 3, 'float32')
    _test_split((1, 6, 3, 5), -3, 3, 'float32')
    _test_split((1, 3, 6, 5), -2, 3, 'float32')
    _test_split((1, 3, 5, 6), -1, 3, 'float32')
    # size_splits list
    _test_split((6,), 0, [1, 2, 3], 'int32')
    _test_split((3, 6, 4), -2, [1, 4, 1], 'float32')


#######################################################################
# Unstack
# -------

def _test_unstack(ip_shape, axis, dtype):
    np_data = np.random.uniform(-5, 5, size=ip_shape).astype(dtype)

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.unstack(in_data, axis=axis)

    compare_tf_with_tvm([np_data], ['in_data:0'], [f'unstack:{n}' for n in range(ip_shape[axis])])

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.stack(tf.unstack(in_data, axis=axis), axis=axis)

    compare_tf_with_tvm([np_data], ['in_data:0'], 'stack:0')

def test_forward_unstack():
    '''test unstack layer'''
    _test_unstack((6,), 0, 'int32')
779
    _test_unstack((2, 6), 1, 'float64')
780
    # negative axis
781 782
    _test_unstack((1, 4), -1, 'int32')
    _test_unstack((3, 6, 4), -2, 'float32')
783

784 785

#######################################################################
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
# Tile
# ----

def _test_tile(in_shape, multiples, dtype):
    np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    tf.tile(in_data, multiples=multiples, name="tile")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'tile:0')

def test_forward_tile():
    '''test Tile'''
    _test_tile((2, ), (3, ), "int32")
    _test_tile((2, 2), (2, 3), "float32")
    _test_tile((2, 4, 6), (6, 7, 8), "float64")


#######################################################################
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
# Multi Input to graph
# --------------------

def test_forward_multi_input():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1')
        in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2')
        in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3')
        in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4')

        out1 = tf.add(in1, in2, name='out1')
        out2 = tf.subtract(in3, in4, name='out2')
        out = tf.multiply(out1, out2, name='out')
        in_data = np.arange(9, dtype='int32').reshape([3, 3])

        compare_tf_with_tvm([in_data, in_data, in_data, in_data],
                            ['in1:0', 'in2:0', 'in3:0', 'in4:0'], 'out:0')

#######################################################################
# Multi Output to Graph
# ---------------------

def test_forward_multi_output():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1')
        in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2')
        in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3')
        in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4')

        out1 = tf.add(in1, in2, name='out1')
        out2 = tf.subtract(in3, in4, name='out2')
        in_data = np.arange(9, dtype='int32').reshape([3, 3])
        in_data = [in_data] * 4
        in_name = ['in1:0', 'in2:0', 'in3:0', 'in4:0']
        out_name = ['out1:0', 'out2:0']
        out_node = [out.strip(':0') for out in out_name]
        in_node = [inp.strip(':0') for inp in in_name]
841

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
        with tf.Session() as sess:
            final_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph.as_graph_def(add_shapes=True), out_node,)
            tf_output = run_tf_graph(sess, in_data, in_name, out_name)
            tvm_output = run_tvm_graph(final_graph_def, in_data, in_node, target='llvm',
                                       out_names=out_node, num_output=2)
            for i in range(len(tf_output)):
                tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)

#######################################################################
# Resize Bilinear
# ---------------

def _test_resize_bilinear(in_shape, to_shape, align_corners):
    """ One iteration of resize bilinear """

    data = np.random.uniform(size=in_shape).astype('float32')
    shape_data = np.array(to_shape).astype('int32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
863 864
        shape_data = constant_op.constant(
            shape_data, shape=shape_data.shape, dtype=shape_data.dtype)
865 866 867 868
        tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners)

        compare_tf_with_tvm(data, 'Placeholder:0', 'ResizeBilinear:0')

869 870 871 872 873 874 875 876 877 878 879 880 881 882
def _test_resize_bilinear_from_tensor(in_shape, align_corners):
    """ One iteration of resize bilinear with non-constant output shape, requires
        value inference to get proper output shape."""

    data = np.random.uniform(size=in_shape).astype('float32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(
            shape=[in_shape[0], in_shape[1], None, None], dtype=data.dtype)
        to_shape = tf.shape(in_data)[2:]
        tf.image.resize_bilinear(in_data, to_shape, align_corners=align_corners)

        compare_tf_with_tvm(data, 'Placeholder:0', 'ResizeBilinear:0')

883 884 885 886 887
def test_forward_resize_bilinear():
    """ Resize Bilinear """

    _test_resize_bilinear((4, 16, 32, 32), [50, 50], False)
    _test_resize_bilinear((6, 32, 64, 64), [20, 20], True)
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    _test_resize_bilinear_from_tensor((4, 16, 32, 32), False)
    _test_resize_bilinear_from_tensor((6, 32, 50, 50), True)

#######################################################################
# BroadcastTo
# -----------

def _test_broadcast_to(in_shape, to_shape):
    """ One iteration of broadcast_to"""

    data = np.random.uniform(size=in_shape).astype('float32')
    shape_data = np.array(to_shape).astype('int32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        shape_data = constant_op.constant(
            shape_data, shape=shape_data.shape, dtype=shape_data.dtype)
        tf.broadcast_to(in_data, shape_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'BroadcastTo:0', opt_level=0)


def _test_broadcast_to_from_tensor(in_shape):
    """ One iteration of broadcast_to with unknown shape at graph build"""

    data = np.random.uniform(size=in_shape).astype('float32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(
            shape=[None], dtype=data.dtype)

        shape_data = tf.multiply(tf.shape(in_data), 32)
        tf.broadcast_to(in_data, shape_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'BroadcastTo:0')


def test_forward_broadcast_to():
    """ Resize Bilinear """

    _test_broadcast_to((4, 1, 32, 32), [4, 8, 32, 32])
    _test_broadcast_to((6, 32, 32, 1), [6, 32, 32, 16])
    _test_broadcast_to_from_tensor((1))


#######################################################################
# Fill
# ----

def _test_fill(in_shape):
    """ Use the fill op to create a tensor of ones with non-constant shape."""

    with tf.Graph().as_default():
        tf.ones(shape=in_shape, dtype='float32')
        compare_tf_with_tvm(in_shape, [], 'ones:0', opt_level=1)

def _test_fill_from_tensor(in_shape):
    """ Use the fill op to create a tensor of ones with non-constant shape.
        Some extra ops need to be added here to prevent the graph from
        being fully constant and folded away."""

    data = np.random.uniform(size=in_shape).astype('float32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(
            shape=[in_shape[0], in_shape[1], None, None], dtype=data.dtype)

        x = tf.ones(shape=2*tf.shape(in_data), dtype=data.dtype)
        y = tf.math.add(in_data, tf.reduce_mean(x), name='out1')
        compare_tf_with_tvm(data, 'Placeholder:0', 'out1:0')

def test_forward_fill():
    """ Resize Bilinear """

    _test_fill((32))
    _test_fill((6, 32, 64, 64))
    _test_fill_from_tensor((6, 32, 64, 64))
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
#######################################################################
# Crop to bounding box
# --------------------

def _test_crop(in_shape, off_h, off_w, tar_h, tar_w):
    """ Crop to bounding box """
    data = np.random.uniform(size=in_shape).astype('float32')
    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        tf.image.crop_to_bounding_box(in_data, off_h, off_w, tar_h, tar_w)
        compare_tf_with_tvm(data, 'Placeholder:0', 'crop_to_bounding_box/Slice:0')

def test_forward_crop():
    """ Crop to bounding box """
    _test_crop((1, 224, 224, 3), 20, 20, 120, 120)

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

#######################################################################
# LSTM
# ----

def _test_lstm_cell(batch_size, num_hidden, num_layers, forget_bias, dtype):
    """ One iteration of a LSTM cell """

    tf.reset_default_graph()
    input_size = num_hidden
    input_data = np.full((batch_size, input_size), 1., dtype=dtype)
    in_state_c = np.full((num_layers, batch_size, num_hidden), 0.1, dtype=dtype)
    in_state_h = np.full((num_layers, batch_size, num_hidden), 0.1, dtype=dtype)

    def _get_tensorflow_output():
        with tf.Session() as sess:
            with variable_scope.variable_scope(
                "root", initializer=init_ops.constant_initializer(0.5)):
                m0 = array_ops.zeros([batch_size, num_hidden])
                m1 = array_ops.zeros([batch_size, num_hidden])
                x=tf.placeholder(shape=(batch_size, input_size), dtype=dtype)
                g, ((out_m0, out_m1)) = \
                     tf.contrib.rnn.LSTMBlockCell(num_hidden,
                                                  forget_bias=forget_bias)(x, ((m0, m1)))
                sess.run([variables.global_variables_initializer()])
                res = sess.run([g, out_m0, out_m1], {
                    x.name: np.array([[1., 1.]]),
                    m0.name: 0.1 * np.ones([batch_size, num_hidden]),
                    m1.name: 0.1 * np.ones([batch_size, num_hidden]),
                })
            graph_def = sess.graph.as_graph_def(add_shapes=True)
            final_graph_def = graph_util.convert_variables_to_constants(
                sess,
                graph_def,
                ['root/lstm_cell/LSTMBlockCell'])
            return final_graph_def, res

    graph_def, tf_out = _get_tensorflow_output()
    tvm_output = run_tvm_graph(graph_def, [input_data, in_state_c, in_state_h],
                               ['root/Placeholder', 'root/lstm_cell/LSTMBlockCell_c',
                                'root/lstm_cell/LSTMBlockCell_h'], num_output=2)
    assert isinstance(tvm_output, list)

    out = tvm_output[0]
    out_state = tvm_output[1]
    out_state_tup = np.split(out_state, indices_or_sections=2, axis=1)
    out_state_c = np.reshape(out_state_tup[0], (batch_size, num_hidden))
    out_state_h = np.reshape(out_state_tup[1], (batch_size, num_hidden))
    tvm_out = [out, out_state_c, out_state_h]
    tvm.testing.assert_allclose(tf_out[0], tvm_out[0], rtol=1e-3, atol=1e-3)

def test_forward_lstm():
    '''test LSTM block cell'''
    _test_lstm_cell(1, 2, 1, 0.0, 'float32')



#######################################################################
# Pack
# ---
def _test_pack(axis, shape, **kwargs):

    a = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)
    b = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)

    with tf.Graph().as_default():
        tf_a = array_ops.placeholder(shape=shape, dtype='float32', name='pl_a')
        tf_b = array_ops.placeholder(shape=shape, dtype='float32', name='pl_b')
        tf_c = tf.stack([tf_a,tf_b], axis=axis, **kwargs)
        assert tf_c.op.op_def.name == 'Pack', "tf.stack() is expected to produce 'Pack' operation"

        compare_tf_with_tvm([a,b], ['pl_a:0','pl_b:0'], 'stack:0')

def test_forward_pack():
    for axis in range(-3,3):
        _test_pack(axis, [3,2,1])
    for axis in range(-1,1):
        _test_pack(axis, [3])
    _test_pack(0, [])

#######################################################################
# Pad
# ---
def _test_pad(input_shape, paddings, mode, **kwargs):
    """ One iteration of pad operation with given shape"""

    x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape)

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=input_shape, dtype='float32')
        pad_values = constant_op.constant(paddings)
        pad = tf.pad(in_data, paddings=pad_values, mode=mode, **kwargs)

        if mode == 'CONSTANT':
            if 'constant_values' in kwargs:
                out_name = 'PadV2:0'
            else:
                out_name = 'Pad:0'

        compare_tf_with_tvm(x, 'Placeholder:0', out_name)

def test_forward_pad():
    """ Pad """
    _test_pad((2, 3), [[1,1], [2,2]], mode="CONSTANT")
    _test_pad((2, 3), [[1,1], [2,2]], mode="CONSTANT", constant_values=1.0)

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#######################################################################
# Logical operators
# --------------------
def test_logical_and():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_and(in1, in2, name='out')
        in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')

def test_logical_or():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_or(in1, in2, name='out')
        in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')

def test_logical_xor():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_xor(in1, in2, name='out')
        in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')

def test_logical_not():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        out = tf.logical_not(in1, name='out')
        in_data1 = np.random.choice(a=[False, True],size=(1, 4, 4, 3)).astype('bool')
        compare_tf_with_tvm(in_data1, 'in1:0', 'out:0')

def test_forward_logical():
    test_logical_and()
    test_logical_or()
    test_logical_xor()
    test_logical_not()

1131 1132

#######################################################################
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
# Where, Select
# -------------
def test_where():
    ''' Where: return elements depending on conditions'''
    with tf.Graph().as_default():
        with tf.Session() as sess:
            input1 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name='input1')
            input2 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name='input2')
            mask = input1 > input2
            tf.where(mask, input1 + 1, input2 * 2)
            in_data1 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32")
            in_data2 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32")
            compare_tf_with_tvm([in_data1, in_data2], ['input1:0', 'input2:0'], 'Select:0')


#######################################################################
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
# Inception V3
# ------------
def test_forward_inception_v3():
    '''test inception V3 model'''
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload('InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb')
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        data = np.random.uniform(size=(1, 299, 299, 3)).astype('float32')

        with tf.Session() as sess:
            tf_output = run_tf_graph(sess, data, 'input:0', 'InceptionV3/Predictions/Reshape_1:0')
            tvm_output = run_tvm_graph(graph_def, data, 'input')
            tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5)

#######################################################################
# Inception V1
# ------------
def test_forward_inception_v1():
    '''test inception V1 model'''
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        # Build an image from random data.
        from PIL import Image
        from tvm.contrib import util

        img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8")
        img = Image.frombuffer('RGB', (600, 600), img_array.tostring(), 'raw', 'RGB', 0, 1)
        temp = util.tempdir()
        img_path = temp.relpath("tf-test.jpg")
        img.save(img_path);

        import os.path
        if not tf.gfile.Exists(os.path.join(img_path)):
            tf.logging.fatal('File does not exist %s', img_path)
        data = tf.gfile.FastGFile(os.path.join(img_path), 'rb').read()

        temp.remove()

        # Extract tensorflow decoded image frame for tvm input
        with tf.Session() as sess:
            tvm_data = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'DecodeJpeg:0')

        with tf.Session() as sess:
            tf_output = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'softmax:0')
            tvm_output = run_tvm_graph(graph_def, tvm_data, 'DecodeJpeg/contents')
            tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5)

#######################################################################
# Mobilenet
# ---------
def test_forward_mobilenet():
    '''test mobilenet model'''
    # MobilenetV2
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload(
            "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz",
            "mobilenet_v2_1.4_224_frozen.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32')
        out_node = 'MobilenetV2/Predictions/Reshape_1'

        with tf.Session() as sess:
            # Add shapes to the graph.
            graph_def = tf_testing.AddShapesToGraphDef(sess, out_node)
            tf_output = run_tf_graph(sess, data, 'input:0', out_node + ':0')
            tvm_output = run_tvm_graph(graph_def, data, 'input')
            tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5)

#######################################################################
# ResnetV2
1226
# --------
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
def test_forward_resnetv2():
    '''test resnet model'''
    if is_gpu_available():
        with tf.Graph().as_default():
            graph_def = tf_testing.get_workload("ResnetV2/resnet-20180601_resnet_v2_imagenet-shapes.pb")
            # Call the utility to import the graph definition into default graph.
            graph_def = tf_testing.ProcessGraphDefParam(graph_def)

            data = np.random.uniform(size=(128, 224, 224, 3)).astype('float32')
            out_node = 'ArgMax'

            with tf.Session() as sess:
                tf_output = run_tf_graph(sess, data, 'input_tensor:0', out_node + ':0')
1240 1241 1242 1243 1244 1245 1246
                for device in ["llvm", "cuda"]:
                    ctx = tvm.context(device, 0)
                    if not ctx.exist:
                        print("Skip because %s is not enabled" % device)
                        continue
                    tvm_output = run_tvm_graph(graph_def, data, 'input_tensor', len(tf_output), target=device)
                    tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5)
1247 1248

#######################################################################
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
# Placeholder
# -----------
def test_forward_placeholder():
    '''test a simple pb with Placeholder node in the end of GraphDef'''
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload("Custom/placeholder.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32')
        out_node = 'mul'

        with tf.Session() as sess:
            # Add shapes to the graph.
            graph_def = tf_testing.AddShapesToGraphDef(sess, out_node)
            tf_output = run_tf_graph(sess, data, 'Placeholder:0', out_node + ':0')
            tvm_output = run_tvm_graph(graph_def, data, 'Placeholder')
            tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5)

#######################################################################
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
# PTB
# ---
dir(tf.contrib)
def test_forward_ptb():
    '''test ptb model'''
    config = tf_testing.get_config()
    num_steps = config.num_steps
    num_hidden = config.hidden_size
    num_layers = config.num_layers
    batch_size = config.batch_size
    vocab_size = config.vocab_size
    out_sample_shape = (batch_size, vocab_size)
    out_state_shape = (num_layers, 2, batch_size, num_hidden)
    #Sample input
    inpt = "we have no useful information on"
    cnt_sample = 20

    def _pretty_print(items, is_char_model, id2word):
        if not is_char_model:
            return ' '.join([id2word[x] for x in items])
        else:
            return ''.join([id2word[x] for x in items]).replace('_', ' ')

    def _get_tvm_graph_module(graph_def):
        #Cell inputs 'c and 'h' consist of all layers values
        shape_dict = {'Model/Placeholder': (batch_size, num_steps),
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c':(num_layers, batch_size, num_hidden),
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h':(num_layers, batch_size, num_hidden)}

        sym, params = relay.frontend.from_tensorflow(graph_def, shape=shape_dict)

        dtype_dict = {'Model/Placeholder': 'int32',
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c':'float32',
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h':'float32'}
        target = 'llvm'
        with relay.build_config(opt_level=0):
            graph, lib, params = relay.build(sym, target, params=params)
        from tvm.contrib import graph_runtime
        ctx = tvm.cpu(0)
        return params, graph_runtime.create(graph, lib, ctx)

    def _do_tvm_sample(model, data, in_states, params, num_samples):
        """Sampled from the model"""
        samples = []
        state = in_states
        sample = None
        def _get_sample(data, state):
            input_data = np.full((batch_size, num_steps), data, dtype="int32")
            in_state_tup = np.split(state, indices_or_sections=2, axis=1)
            in_state_c = np.reshape(in_state_tup[0], (num_layers, batch_size, num_hidden))
            in_state_h = np.reshape(in_state_tup[1], (num_layers, batch_size, num_hidden))

            model.set_input('Model/Placeholder', tvm.nd.array(input_data.astype("int32")))
            model.set_input('Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c',
                        tvm.nd.array(in_state_c.astype("float32")))
            model.set_input('Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h',
                        tvm.nd.array(in_state_h.astype("float32")))
            model.set_input(**params)
            model.run()
            tvm_output = model.get_output(0, tvm.nd.empty(out_sample_shape,
                                                      "float32")).asnumpy()
            state_output = model.get_output(1, tvm.nd.empty(out_state_shape,
                                                        "float32")).asnumpy()
            sample = tf_testing.pick_from_weight(tvm_output[0])

            return sample, state_output

        for x in data:
            sample, state = _get_sample(x, state)

        if sample is not None:
            samples.append(sample)
        else:
            samples.append(0)

        k = 1
        while k < num_samples:
            sample, state = _get_sample(samples[-1], state)
            samples.append(sample)
            k += 1
        return samples, state

    with tf.Graph().as_default():
        word_to_id, id_to_word, graph_def = tf_testing.get_workload_ptb()
        vocab_size = len(word_to_id)
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)
        sess = tf.Session()

    #TVM graph module creation
    params, m = _get_tvm_graph_module(graph_def)

    # Create 10 predicted statments of 20 words
    cnt_stm = 0
    while cnt_stm < 10:
        cnt_stm += 1
        in_state = np.full((num_layers, 2, batch_size, num_hidden), 0, dtype="float32")
        seed_for_sample = inpt.split()
        tvm_samples, tvm_state = _do_tvm_sample(m, [word_to_id[word] \
                                                    for word in seed_for_sample],
                                                in_state, params, cnt_sample)
        tvm_sample_str = _pretty_print(tvm_samples, False, id_to_word)
        tf_samples, tf_state = tf_testing.do_tf_sample(sess,
                                [word_to_id[word] for word in seed_for_sample],
                                in_state, cnt_sample)
        tf_sample_str = _pretty_print(tf_samples, False, id_to_word)
        inpt = tvm_sample_str
        tvm.testing.assert_allclose(tf_samples, tvm_samples, rtol=1e-5, atol=1e-5)
        assert(tvm_sample_str == tf_sample_str)

#######################################################################
# LRN (Local Response Normalization)
# ----------------------------------

def _test_lrn(ishape, size, axis, bias, alpha, beta):
    """ testing local response normalization """
    lrn_depth_radius = size / 2

    inp_array = np.random.uniform(size=ishape).astype(np.float32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype, name="lrn0_data")
        nn_ops.local_response_normalization(in1,
                                            name="lrn",
                                            depth_radius=lrn_depth_radius,
                                            bias=bias,
                                            alpha=alpha,
                                            beta=beta)

        compare_tf_with_tvm(inp_array, 'lrn0_data:0', 'lrn:0')

def test_forward_lrn():
    _test_lrn((1, 3, 20, 20), 3, 1, 1.0, 1.0, 0.5)

#######################################################################
# l2_normalize
# ------------

def _test_l2_normalize(ishape, eps, axis):
    """ testing l2 normalize (uses max, sum, square, sqrt frontend operators)"""

    inp_array = np.random.uniform(size=ishape).astype(np.float32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        nn.l2_normalize(in1,
                        axis=axis,
                        epsilon=eps,
                        name=None,
                        dim=None)

        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'l2_normalize:0')

def test_forward_l2_normalize():
    _test_l2_normalize((1, 3, 20, 20), 0.001, (0,))

#######################################################################
# transpose
# ---------
def _test_forward_transpose(ishape, axes=None):
    data = np.random.uniform(size=ishape).astype(np.float32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="transpose_data")

        if axes is None:
            tf.transpose(in1)
        else:
            tf.transpose(in1, perm=axes)

        compare_tf_with_tvm(data, 'transpose_data:0', 'transpose:0')

def test_forward_transpose():
    _test_forward_transpose((2, 3, 4), (1, 2, 0))
    _test_forward_transpose((2, 3, 4))
    _test_forward_transpose((7, 8, 8, 10))
    _test_forward_transpose((2, 3, 4), (1, 2, 0))
    _test_forward_transpose((2, 3, 4), (0, 1, 2))
    _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2))


def test_forward_ceil():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.ceil(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Ceil:0')

def test_forward_floor():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.floor(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Floor:0')

def test_forward_relu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.relu(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Relu:0')

def test_forward_leaky_relu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.leaky_relu(in1, alpha=0.4)
1480
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu:0')
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

def test_forward_elu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.elu(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Elu:0')

def test_forward_selu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.selu(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Selu:0')

def test_forward_tanh():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.tanh(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Tanh:0')

#######################################################################
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
# Tensor
# ------

def test_forward_round():
    """test Round"""
    np_data = np.random.uniform(-10, 10, size=(5, 7)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7), name="in_data")
    tf.round(in_data, name="round")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'round:0')

def _test_forward_reverse_v2(in_shape, axis, dtype):
    np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    tf.reverse(in_data, axis=[axis], name="reverse")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'reverse:0')

def test_forward_reverse_v2():
    """test ReverseV2"""
    _test_forward_reverse_v2((2, 3), 0, "int32")
    _test_forward_reverse_v2((2, 3, 5), 2, "float32")
    _test_forward_reverse_v2((2, 3, 5, 7), 1, "float32")
    _test_forward_reverse_v2((2, 3, 5), -1, "float64")
    _test_forward_reverse_v2((2, 3, 5), -3, "float64")

def test_forward_sign():
    """test Sign"""
    np_data = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
    tf.sign(in_data, name="sign")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'sign:0')

def test_forward_pow_exp():
1542 1543 1544
    """test Pow and Exp """
    np_in1 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32)
    np_in2 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32)
1545 1546 1547 1548
    tf.reset_default_graph()
    in1 = tf.placeholder(tf.float32, (5, 7, 11), name="in1")
    in2 = tf.placeholder(tf.float32, (5, 7, 11), name="in2")
    out1 = tf.pow(in1, in2, name="pow")
1549
    out = tf.exp(in1, name='exp')
1550
    compare_tf_with_tvm([np_in1, np_in2], ['in1:0', 'in2:0'], 'pow:0')
1551
    compare_tf_with_tvm([np_in1], ['in1:0'], 'exp:0')
1552

1553
def test_forward_log():
1554
    """test operator Log """
1555 1556 1557 1558 1559 1560
    np_data = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data")
    tf.log(in_data, name="log")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'log:0')

1561 1562 1563 1564 1565 1566 1567 1568
def test_forward_softplus():
    """test operator Softplus"""
    np_data = np.random.uniform(1, 10, size=(2, 3, 5)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data")
    tf.nn.softplus(in_data, name="softplus")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'softplus:0')

1569 1570 1571 1572 1573 1574 1575 1576
def test_forward_rsqrt():
    """test Rsqrt """
    np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
    tf.rsqrt(in_data, name="rsqrt")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'rsqrt:0')

1577 1578 1579 1580 1581 1582 1583 1584
def test_forward_sqrt():
    """test Sqrt """
    np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
    tf.sqrt(in_data, name="sqrt")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'sqrt:0')

1585
#######################################################################
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
# Mean
# ----
def test_forward_mean():
    def check_mean(ishape, **kwargs):
        inp_array = np.random.uniform(size=ishape).astype(np.float32)
        with tf.Graph().as_default():
            in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
            tf.keras.backend.mean(in1, **kwargs)
            compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Mean:0', no_gpu=True)

    check_mean((10, 8, 16, 32))
    check_mean((10, 8, 16, 32), axis=(2,3))
    check_mean((10, 8, 16, 32), axis=(1,2), keepdims=True)

#######################################################################
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
# All
# ---
def test_forward_all():
    """Test the All operator."""
    np_data = np.random.choice([True, False], size=(5, 7, 11))
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.bool, (5, 7, 11), name="in_data")
    tf.reduce_all(in_data, name="all")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'all:0')

#######################################################################
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
# Relational operators
# --------------------
def _test_forward_rel_op(data, func):
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in1')
        in2 = tf.placeholder(shape=data[1].shape, dtype=data[1].dtype, name='in2')
        op = func(in1, in2, name='op')
        out = tf.cast(op, tf.int32, name='out1')
        compare_tf_with_tvm([data[0], data[1]], ['in1:0', 'in2:0'], 'out1:0')

def test_forward_rel_ops():
    t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
    _test_forward_rel_op([t1, t2], math_ops.less)
    _test_forward_rel_op([t1, t2], math_ops.greater)
    _test_forward_rel_op([t1, t2], math_ops.less_equal)
    _test_forward_rel_op([t1, t2], math_ops.greater_equal)
    _test_forward_rel_op([t1, t2], math_ops.equal)
    _test_forward_rel_op([t1, t2], math_ops.not_equal)

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
#######################################################################
# ExpandDims
# ----------
def _test_forward_expand_dims(data, axis):
    in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name='in1')
    out = tf.expand_dims(in1, axis)
    compare_tf_with_tvm([data], [in1.name], out.name)

def test_forward_expand_dims():
    _test_forward_expand_dims(np.int32(1), 0)
    _test_forward_expand_dims(np.array([1]), 0)
    _test_forward_expand_dims(np.array([1]), -1)
    _test_forward_expand_dims(np.array([[1], [2]]), 0)
    _test_forward_expand_dims(np.array([[1], [2]]), 1)
    _test_forward_expand_dims(np.array([[1], [2]]), -1)
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

#######################################################################
# Prod
# ----
def _test_forward_reduce_prod(shape, axis, keepdims):
    inp_array1 = np.random.uniform(-5, 5, size=shape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array1.shape, dtype=inp_array1.dtype)
        out = tf.math.reduce_prod(in1, axis, keepdims)
        compare_tf_with_tvm(inp_array1, in1.name, out.name)

def test_forward_reduce_prod():
    _test_forward_reduce_prod((5,), 0, False)
    _test_forward_reduce_prod((5, 5), 0, False)
    _test_forward_reduce_prod((5, 5), 1, False)
    _test_forward_reduce_prod((5,), 0, True)
    _test_forward_reduce_prod((5, 5), 0, True)
    _test_forward_reduce_prod((5, 5), 1, True)

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

#######################################################################
# PlaceholderWithDefault
# ----------------------
def test_placeholder():
    with tf.Graph().as_default():
        in_data1 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32)
        var1 = tf.Variable(in_data1, name='in1')
        var2 = array_ops.placeholder_with_default(var1, None, name='place1')

        in_data2 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32)
        place1 = array_ops.placeholder(shape=in_data1.shape, dtype=in_data1.dtype, name='in2')

        out1 = tf.math.add(var1, var2, name='out1')
        out2 = tf.math.add(out1, place1, name='out2')

        compare_tf_with_tvm([in_data1, in_data2], ['place1:0', 'in2:0'], 'out2:0', init_global_variables=True)

1685 1686 1687 1688
#######################################################################
# Main
# ----
if __name__ == '__main__':
1689

1690 1691 1692
    # Transforms
    test_forward_transpose()
    test_forward_reshape()
1693
    test_forward_depthtospace()
1694 1695 1696
    test_forward_squeeze()
    test_forward_pack()
    test_forward_resize_bilinear()
1697 1698
    test_forward_broadcast_to()
    test_forward_fill()
1699
    test_forward_crop()
1700 1701
    test_forward_pad()
    test_forward_gather()
1702
    test_forward_gather_v1()
1703
    test_forward_stridedslice()
1704 1705
    test_forward_split()
    test_forward_unstack()
1706
    test_forward_tile()
1707 1708 1709 1710 1711 1712 1713 1714 1715

    # Activations
    test_forward_sigmoid()
    test_forward_relu()
    test_forward_leaky_relu()
    test_forward_elu()
    test_forward_selu()
    test_forward_tanh()

1716 1717 1718 1719 1720
    # Tensor
    test_forward_round()
    test_forward_reverse_v2()
    test_forward_pow_exp()
    test_forward_sign()
1721
    test_forward_log()
1722 1723
    test_forward_softplus()
    test_forward_sqrt()
1724
    test_forward_rsqrt()
1725
    test_forward_expand_dims()
1726

1727 1728 1729 1730
    # Reductions
    test_forward_argminmax()
    test_forward_reduce()
    test_forward_mean()
1731
    test_forward_reduce_prod()
1732
    test_forward_all()
1733 1734 1735 1736 1737

    # General
    test_forward_multi_input()
    test_forward_multi_output()
    test_forward_variable()
1738
    test_placeholder()
1739 1740 1741 1742 1743 1744 1745 1746

    # NN
    test_forward_convolution()
    test_forward_pooling()
    if tf.__version__ == '1.4.1':
        _test_forward_concat_v2()
    test_forward_lrn()
    test_forward_l2_normalize()
1747 1748
    test_forward_space_to_batch_nd()
    test_forward_batch_to_space_nd()
1749 1750 1751 1752 1753 1754

    # End to End
    test_forward_inception_v3()
    test_forward_inception_v1()
    test_forward_mobilenet()
    test_forward_resnetv2()
1755
    test_forward_placeholder()
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
    test_forward_ptb()

    # RNN
    test_forward_lstm()

    # Elementwise
    test_forward_ceil()
    test_forward_floor()

    # Relational ops
    test_forward_rel_ops()
1767
    test_forward_logical()
1768
    test_where()