test_pass_mac_count.py 5.79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17
"""Unit tests for MAC counter."""
18
import numpy as np
19
import tvm
20
from tvm import te
21
from tvm import relay
Zhi committed
22 23 24 25 26
from tvm.relay import analysis, transform


def run_opt_pass(expr, opt_pass):
    assert isinstance(opt_pass, transform.Pass)
27
    mod = tvm.IRModule.from_expr(expr)
Zhi committed
28
    mod = opt_pass(mod)
29
    entry = mod["main"]
Zhi committed
30 31
    return entry if isinstance(expr, relay.Function) else entry.body

32 33 34 35 36 37 38 39 40 41 42

def test_gemm():
    n = 512
    k = 1024
    m = 256
    dshape1 = (n, k)
    dshape2 = (m, k)
    data1 = relay.var("data1", shape=dshape1)
    data2 = relay.var("data2", shape=dshape2)
    gemm = relay.nn.dense(data1, data2)
    func = relay.Function([data1, data2],
43
                            relay.Tuple(tvm.runtime.convert([gemm])))
Zhi committed
44 45
    func = run_opt_pass(func, transform.InferType())
    compute_count = analysis.get_total_mac_number(func)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    expect_count = n * m * k
    assert compute_count == expect_count

def test_conv():
    batch_size = 1
    input_channel = 3
    h = 224
    w = 224
    output_channel = 64
    kh = 7
    kw = 7
    h_padding = 1
    w_padding = 1
    oh = h + h_padding * 2 - kh + 1
    ow = w + w_padding * 2 - kw + 1
    dshape = (batch_size, input_channel, h, w)
    weight = relay.var("weight", shape=(output_channel, input_channel, kh, kw))
    data = relay.var("data", shape=dshape)
    conv2d = relay.nn.conv2d(
        data,
        weight,
        channels=output_channel,
        kernel_size=(kh, kw),
69
        padding=(h_padding, w_padding))
70
    func = relay.Function([data, weight], relay.Tuple(tvm.runtime.convert([conv2d])))
Zhi committed
71 72
    func = run_opt_pass(func, transform.InferType())
    compute_count = analysis.get_total_mac_number(func)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    expect_count = batch_size * input_channel * oh * ow * output_channel * kh * kw
    assert compute_count == expect_count

def test_simple_network():
    batch_size = 1
    dshape = (batch_size, 64, 56, 56)
    weight_conv = relay.var("weight_conv", shape=(64, 64, 3, 3))
    data1 = relay.var("data1", shape=dshape)
    data2 = relay.var("data2", shape=dshape)
    weight_dense = relay.var("weight_dense", shape=(1, 56*56*64))

    conv2d_1 = relay.nn.conv2d(
        data1,
        weight_conv,
        channels=64,
        kernel_size=(3, 3),
        padding=(1, 1))
    conv2d_2 = relay.nn.conv2d(
        data2,
        weight_conv,
        channels=64,
        kernel_size=(3, 3),
        padding=(1, 1))
    add = relay.add(conv2d_1, conv2d_2)
    flattened = relay.nn.batch_flatten(add)
    dense_1 = relay.nn.dense(
        flattened,
        weight_dense)

    func = relay.Function([data1, data2, weight_conv, weight_dense],
103
                            relay.Tuple(tvm.runtime.convert([conv2d_1, conv2d_2,
104 105
                                                    dense_1, add, flattened])))
    # alter the CONV 2D data layout to test
Zhi committed
106 107
    func = run_opt_pass(func, transform.AlterOpLayout())
    compute_count = analysis.get_total_mac_number(func)
108 109 110
    expect_count = 231411712
    assert compute_count == expect_count

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def test_depthwise_conv2d():
    batch_size = 1
    dshape = (batch_size, 64, 56, 56)
    weight_conv = relay.var("weight_depthwiseconv", shape=(64, 1, 3, 3))
    data1 = relay.var("data1", shape=dshape)
    data2 = relay.var("data2", shape=dshape)
    depthwise_conv2d_1 = relay.nn.conv2d(
        data1,
        weight_conv,
        kernel_size=(3, 3),
        padding=(1, 1),
        groups=64)
    depthwise_conv2d_2 = relay.nn.conv2d(
        data2,
        weight_conv,
        kernel_size=(3, 3),
        padding=(1, 1),
        groups=64)
    add = relay.add(depthwise_conv2d_1, depthwise_conv2d_2)
    func = relay.Function([data1, data2, weight_conv],
131
                            relay.Tuple(tvm.runtime.convert([depthwise_conv2d_1,
132 133
                                                    depthwise_conv2d_2,
                                                    add])))
Zhi committed
134 135
    func = run_opt_pass(func, transform.InferType())
    compute_count = analysis.get_total_mac_number(func)
136 137
    assert compute_count == 2 * np.prod(dshape) * 3*3

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def test_conv_2d_transpose():
    batch_size = 1
    input_channel = 3
    h = 224
    w = 224
    output_channel = 64
    kh = 7
    kw = 7
    h_padding = 1
    w_padding = 1
    oh = h - h_padding * 2 + kh - 1
    ow = w - w_padding * 2 + kw - 1
    dshape = (batch_size, input_channel, h, w)
    weight = relay.var("weight", shape=(input_channel, output_channel, kh, kw))
    data = relay.var("data", shape=dshape)
    conv2d_transpose = relay.nn.conv2d_transpose(
        data,
        weight,
        channels=output_channel,
        kernel_size=(kh, kw),
        padding=(h_padding, w_padding))
    func = relay.Function([data, weight],
160
                            relay.Tuple(tvm.runtime.convert([conv2d_transpose])))
Zhi committed
161 162
    func = run_opt_pass(func, transform.InferType())
    compute_count = analysis.get_total_mac_number(func)
163 164 165
    expect_count = batch_size * input_channel * oh * ow * output_channel * kh * kw
    assert compute_count == expect_count

166 167 168 169
if __name__ == "__main__":
    test_conv()
    test_gemm()
    test_simple_network()
170
    test_depthwise_conv2d()
171
    test_conv_2d_transpose()