test_op_grad_level3.py 2.37 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
雾雨魔理沙 committed
18
import pytest
SWu committed
19

20
import tvm
21
from tvm import te
22
from tvm import relay
SWu committed
23
from tvm.relay.testing import check_grad, ctx_list, run_infer_type
24
from tvm.relay.transform import gradient
SWu committed
25

26 27 28 29 30 31 32 33 34 35

def test_clip():
    ref = (lambda x: np.where(x > 10.0, np.zeros_like(x),
                     np.where(x < 1.0, np.zeros_like(x), np.ones_like(x))))
    x = relay.var("x", relay.TensorType((10, 4), "float32"))
    y = tvm.relay.clip(x, 1.0, 10.0)

    data = np.random.rand(10, 4).astype("float32") * 11.0
    ref_grad = ref(data)
    fwd_func = relay.Function([x], y)
36
    fwd_func = run_infer_type(fwd_func)
37 38 39 40 41 42 43 44
    bwd_func = run_infer_type(gradient(fwd_func))

    for target, ctx in ctx_list():
        intrp = relay.create_executor(ctx=ctx, target=target)
        op_res, (op_grad, ) = intrp.evaluate(bwd_func)(data)
        np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)


SWu committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
def verify_transpose_grad(d_shape, axes=None):
    data = relay.var("data", relay.TensorType(d_shape, "float32"))
    fwd_func = relay.Function([data], relay.transpose(data, axes=axes))
    check_grad(fwd_func)


def test_transpose_grad():
    verify_transpose_grad((1, 2, 3, 4))
    verify_transpose_grad((1, 2, 3, 4), axes=(0, 2, 3, 1))


def test_negative_grad():
    data = relay.var("data", relay.TensorType((10, 4), "float32"))
    fwd_func = relay.Function([data], relay.negative(data))
    check_grad(fwd_func)


62 63 64 65 66
def test_cast_grad():
    data = relay.var("data", relay.TensorType((10, 4), "float32"))
    fwd_func = relay.Function([data], relay.cast(data, "float64"))
    check_grad(fwd_func)

67
if __name__ == "__main__":
雾雨魔理沙 committed
68
    pytest.main()