coreml.py 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18
# pylint: disable=invalid-name, import-self, unused-argument, unused-variable
# pylint: disable=inconsistent-return-statements, import-outside-toplevel
19
"""CoreML frontend."""
20
import math
21
import numpy as np
Zhi committed
22
import tvm
23 24
from tvm.ir import IRModule

Zhi committed
25
from .. import analysis
26
from .. import expr as _expr
Zhi committed
27
from .. import function as _function
28 29 30 31
from .. import op as _op
from ... import nd as _nd
from ..._ffi import base as _base
from .common import ExprTable
32
from .common import infer_shape as _infer_shape
33 34 35 36 37

__all__ = ['from_coreml']


def _NeuralNetworkImageScaler(op, inexpr, etab):
38
    # TODO: we need to support more colorspace, such as rgb.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    # this changes the symbol
    biases = np.array([op.blueBias, op.greenBias, op.redBias]).reshape([3, 1, 1])
    bias = etab.new_const(biases)
    ret = _op.multiply(inexpr, _expr.const(op.channelScale, dtype='float32'))
    ret = _op.add(ret, bias)
    return ret


def _NeuralNetworkMeanImage(op, inexpr, etab):
    # this changes the symbol
    ret = _op.subtract(inexpr, _expr.const(op.meanImage, dtype='float32'))
    return ret


def _ConvolutionLayerParams(op, inexpr, etab):
    """Convolution layer params."""
55 56 57 58 59 60
    if op.isDeconvolution:
        weights = etab.new_const(np.array(list(op.weights.floatValue)).reshape(
            tuple([op.kernelChannels, op.outputChannels] + list(op.kernelSize))))
    else:
        weights = etab.new_const(np.array(list(op.weights.floatValue)).reshape(
            tuple([op.outputChannels, op.kernelChannels] + list(op.kernelSize))))
61 62 63
    dilation = list(op.dilationFactor)
    if not dilation:
        dilation = [1, 1]
64
    N, C, H, W = _infer_shape(inexpr)
65 66 67 68 69 70 71 72
    params = {'channels':op.outputChannels,
              'kernel_size':list(op.kernelSize),
              'strides':list(op.stride),
              'dilation': dilation,
              'groups':op.nGroups}

    if op.WhichOneof('ConvolutionPaddingType') == 'valid':
        valid = op.valid
73 74 75 76 77 78
        if valid.paddingAmounts.borderAmounts:
            assert len(valid.paddingAmounts.borderAmounts) == 2
            pad_t = valid.paddingAmounts.borderAmounts[0].startEdgeSize
            pad_l = valid.paddingAmounts.borderAmounts[1].startEdgeSize
            pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize
            pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize
79 80 81 82 83
            if not all(v == 0 for v in (pad_t, pad_l, pad_b, pad_r)):
                inexpr = _op.nn.pad(data=inexpr, pad_width=((0, 0),
                                                            (0, 0),
                                                            (pad_t, pad_b),
                                                            (pad_l, pad_r)))
84
    elif op.WhichOneof('ConvolutionPaddingType') == 'same':
85 86
        assert op.same.asymmetryMode == 0, "Only support BOTTOM_RIGHT_HEAVY mode, " \
                                           "which is used by tf/caffe and so on"
87
        kernel = params['kernel_size']
88 89 90 91 92 93 94 95
        strides = params['strides']
        pad_t, pad_b = get_pad_value(H, kernel[0], strides[0])
        pad_l, pad_r = get_pad_value(W, kernel[1], strides[1])
        inexpr = _op.nn.pad(data=inexpr, pad_width=((0, 0),
                                                    (0, 0),
                                                    (pad_t, pad_b),
                                                    (pad_l, pad_r)))

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    else:
        raise NotImplementedError("Valid/Same convolution padding implemented")

    if op.isDeconvolution:
        ret = _op.nn.conv2d_transpose(data=inexpr, weight=weights, **params)
    else:
        ret = _op.nn.conv2d(data=inexpr, weight=weights, **params)
    if op.hasBias:
        biases = etab.new_const(list(op.bias.floatValue))
        ret = _op.nn.bias_add(ret, biases)

    return ret


def _BatchnormLayerParams(op, inexpr, etab):
    """Get layer of batchnorm parameter"""
    # this changes the symbol
    if op.instanceNormalization:
114 115
        raise tvm.error.OpNotImplemented(
            'Operator "instance normalization" is not supported in frontend CoreML.')
116 117 118 119 120 121 122
    params = {'gamma':etab.new_const(list(op.gamma.floatValue)),
              'beta':etab.new_const(list(op.beta.floatValue)),
              'moving_mean':etab.new_const(list(op.mean.floatValue)),
              'moving_var': etab.new_const(list(op.variance.floatValue)),
              'epsilon': op.epsilon}
    result, moving_mean, moving_var = _op.nn.batch_norm(data=inexpr, **params)
    return result
123 124 125 126 127 128 129 130 131 132


def _ActivationParams(op, inexpr, etab):
    """Get activation parameters"""
    whichActivation = op.WhichOneof('NonlinearityType')
    par = getattr(op, whichActivation)
    if whichActivation == 'linear':
        alpha = _expr.const(par.alpha, dtype='float32')
        beta = _expr.const(par.beta, dtype='float32')
        return _op.add(_op.multiply(inexpr, alpha), beta)
133
    if whichActivation == 'ReLU':
134
        return _op.nn.relu(inexpr)
135
    if whichActivation == 'leakyReLU':
136 137 138 139
        _op.nn.leaky_relu(inexpr, alpha=_expr.const(par.alpha, dtype='float32'))
    elif whichActivation == 'thresholdedReLU':
        alpha_tensor = _op.full_like(inexpr, fill_value=_expr.const(par.alpha, dtype='float32'))
        return _op.multiply(inexpr, _op.greater(inexpr, alpha_tensor).as_type('float32'))
140
    if whichActivation == 'PReLU':
141
        return _op.nn.prelu(inexpr, alpha=_expr.const(par.alpha, dtype='float32'))
142
    if whichActivation == 'tanh':
143
        return _op.tanh(inexpr)
144
    if whichActivation == 'scaledTanh':
145 146 147
        alpha = _expr.const(par.alpha, dtype='float32')
        beta = _expr.const(par.beta, dtype='float32')
        return _op.multiply(_op.tanh(_op.multiply(inexpr, beta)), alpha)
148
    if whichActivation == 'sigmoid':
149
        return _op.sigmoid(inexpr)
150
    if whichActivation == 'sigmoidHard':
151 152 153 154
        alpha = _expr.const(par.alpha, dtype='float32')
        beta = _expr.const(par.beta, dtype='float32')
        transformX = (alpha * inexpr) + beta
        return _op.clip(transformX, a_min=0., a_max=1.)
155
    if whichActivation == 'ELU':
156 157
        return _op.multiply(_op.add(_op.exp(inexpr), _expr.const(-1, dtype='float32')),
                            _expr.const(par.alpha, dtype='float32'))
158
    if whichActivation == 'softsign':
159 160
        return inexpr / (_expr.const(1, dtype='float32') + (
            op.nn.relu(inexpr) + _op.nn.relu(_op.negative(inexpr))))
161
    if whichActivation == 'softplus':
162
        return _op.log(_op.add(_op.exp(inexpr), _expr.const(1, dtype='float32')))
163
    if whichActivation == 'parametricSoftplus':
164 165 166 167 168 169 170 171 172 173 174
        alpha = list(par.alpha.floatValue)
        beta = list(par.alpha.floatValue)
        if len(alpha) == 1:
            return _op.multiply(_op.log(_op.add(_op.exp(inexpr),
                                                _expr.const(beta[0], dtype='float32'))),
                                _expr.const(alpha[0], dtype='float32'))
        alpha = np.array(alpha).reshape((len(alpha), 1, 1))
        beta = np.array(beta).reshape((len(beta), 1, 1))
        alpha_expr = etab.new_const(alpha)
        beta_expr = etab.new_const(beta)
        return _op.multiply(_op.log(_op.add(_op.exp(inexpr), beta_expr)), alpha_expr)
175 176
    raise tvm.error.OpNotImplemented(
        'Operator {} is not supported in frontend CoreML.'.format(whichActivation))
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


def _ScaleLayerParams(op, inexpr, etab):
    """Scale layer params."""
    scale = etab.new_const(np.array(list(op.scale.floatValue)).reshape(
        tuple(list(op.shapeScale) + [1, 1])))
    ret = _op.multiply(inexpr, scale)
    if op.hasBias:
        bias = etab.new_const(np.array(list(op.bias.floatValue)).reshape(
            tuple(list(op.shapeBias) + [1, 1])))
        ret = _op.add(ret, bias)
    return ret


def _PoolingLayerParams(op, inexpr, etab):
    """get pooling parameters"""
    if op.globalPooling:
        if op.type == 0:
            return _op.nn.global_max_pool2d(inexpr)
196
        if op.type == 1:
197
            return _op.nn.global_avg_pool2d(inexpr)
198 199
        raise tvm.error.OpNotImplemented(
            'Only Max and Average Pooling are supported in frontend CoreML.')
200

201 202
    params = {'pool_size':list(op.kernelSize),
              'strides':list(op.stride)}
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    if op.WhichOneof('PoolingPaddingType') == 'valid':
        valid = op.valid
        if valid.paddingAmounts.borderAmounts:
            assert len(valid.paddingAmounts.borderAmounts) == 2
            pad_t = valid.paddingAmounts.borderAmounts[0].startEdgeSize
            pad_l = valid.paddingAmounts.borderAmounts[1].startEdgeSize
            pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize
            pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize
            if not all(v == 0 for v in (pad_t, pad_l, pad_b, pad_r)):
                params['padding'] = [pad_t, pad_l, pad_b, pad_r]
    elif op.WhichOneof('PoolingPaddingType') == 'includeLastPixel':
        # I don't know if this is correct
        valid = op.includeLastPixel
        padding = list(valid.paddingAmounts)
        params['padding'] = padding
        params['ceil_mode'] = True
    else:
        msg = 'PoolingPaddingType {} is not supported in operator Pooling.'
        op_name = op.WhichOneof('PoolingPaddingType')
        raise tvm.error.OpAttributeUnImplemented(msg.format(op_name))

    if op.type == 0:
        return _op.nn.max_pool2d(inexpr, **params)
    if op.type == 1:
        return _op.nn.avg_pool2d(inexpr, **params)
    raise tvm.error.OpNotImplemented(
        'Only Max and Average Pooling are supported in CoreML.')
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272


def _SoftmaxLayerParams(op, inexpr, etab):
    return _op.nn.softmax(_op.nn.batch_flatten(inexpr))


def _InnerProductLayerParams(op, inexpr, etab):
    weights = etab.new_const(np.array(op.weights.floatValue).reshape(
        (op.outputChannels, op.inputChannels)))
    out = _op.nn.dense(data=inexpr, weight=weights, units=op.outputChannels)
    if op.hasBias:
        bias = etab.new_const(np.array(op.bias.floatValue))
        out = _op.nn.bias_add(out, bias)
    return out


def _AddLayerParams(op, inexpr, etab):
    if not isinstance(inexpr, list):
        inexpr = [inexpr]
    ret = inexpr[0]
    for i in range(1, len(inexpr)):
        ret = _op.add(ret, inexpr[i])
    if op.alpha > 0:
        ret = _op.add(ret, _expr.const(op.alpha, dtype='float32'))
    return ret


def _MultiplyLayerParams(op, inexpr, etab):
    if not isinstance(inexpr, list):
        inexpr = [inexpr]
    ret = inexpr[0]
    for i in range(1, len(inexpr)):
        ret = _op.multiply(ret, inexpr[i])
    if op.alpha != 1:
        ret = _op.multiply(ret, _expr.const(op.alpha, dtype='float32'))
    return ret


def _ConcatLayerParams(op, inexpr, etab):
    if not isinstance(inexpr, list):
        inexpr = [inexpr]
    if op.sequenceConcat:
273 274
        raise tvm.error.OpNotImplemented(
            'Operator Sequence Concat is not supported in frontend CoreML.')
275 276 277 278 279 280 281 282 283 284 285
    ret = _op.concatenate(inexpr, axis=1)
    return ret


def _FlattenLayerParams(op, inexpr, etab):
    if op.mode == 1:
        inexpr = _op.transpose(_op.reshape(inexpr, newshape=(0, 0, -1)), axes=(0, 2, 1))
    return _op.nn.batch_flatten(inexpr)


def _PaddingLayerParams(op, inexpr, etab):
286
    """Padding layer params."""
287 288 289
    if op.WhichOneof('PaddingType') == 'constant':
        constant = op.constant
        if constant.value != 0:
290
            raise tvm.error.OpAttributeUnImplemented(
291
                '{} is not supported in operator Padding.'.format(constant.value))
292 293 294 295 296 297 298 299
        pad_t = op.paddingAmounts.borderAmounts[0].startEdgeSize
        pad_l = op.paddingAmounts.borderAmounts[1].startEdgeSize
        pad_b = op.paddingAmounts.borderAmounts[0].endEdgeSize
        pad_r = op.paddingAmounts.borderAmounts[1].endEdgeSize
        return _op.nn.pad(data=inexpr, pad_width=((0, 0),
                                                  (0, 0),
                                                  (pad_t, pad_b),
                                                  (pad_l, pad_r)))
300 301
    raise tvm.error.OpNotImplemented(
        'Non-constant padding is not supported in frontend CoreML.')
302 303 304 305 306 307 308 309 310


def _PermuteLayerParams(op, inexpr, etab):
    axes = tuple(op.axis)
    return _op.transpose(inexpr, axes=axes)


def _UpsampleLayerParams(op, inexpr, etab):
    if op.scalingFactor[0] != op.scalingFactor[1]:
311 312
        raise tvm.error.OpAttributeUnimplemented(
            'Upsample height and width must be equal.')
313
    interpolationMode = 'nearest_neighbor' if op.mode == 0 else 'bilinear'
314 315
    return _op.nn.upsampling(inexpr, scale_h=op.scalingFactor[0],
                             scale_w=op.scalingFactor[1], method=interpolationMode)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383


def _L2NormalizeLayerParams(op, inexpr, etab):
    return _op.nn.l2_normalize(inexpr, eps=op.epsilon, axis=[1])


def _LRNLayerParams(op, inexpr, etab):
    par = {}
    par['size'] = op.localSize
    par['bias'] = op.k
    par['alpha'] = op.alpha
    par['beta'] = op.beta
    par['axis'] = 1 # default layout is nchw
    return _op.nn.lrn(data=inexpr, **par)


def _AverageLayerParams(op, inexpr, etab):
    if not isinstance(inexpr, list) or len(inexpr) < 2:
        raise ValueError("Expect minimum 2 inputs")
    count = len(inexpr)
    _sum = inexpr[0]
    for i in range(1, count):
        _sum = _op.add(_sum, inexpr[i])
    return _sum / _expr.const(count, dtype='float32')


def _MaxLayerParams(op, inexpr, etab):
    if not isinstance(inexpr, list) or len(inexpr) < 2:
        raise ValueError("Expect minimum 2 inputs")
    _max = inexpr[0]
    for i in range(1, len(inexpr)):
        _max = _op.maximum(_max, inexpr[i])
    return _max


def _MinLayerParams(op, inexpr, etab):
    if not isinstance(inexpr, list) or len(inexpr) < 2:
        raise ValueError("Expect minimum 2 inputs")
    _min = inexpr[0]
    for i in range(1, len(inexpr)):
        _min = _op.minimum(_min, inexpr[i])
    return _min


_convert_map = {
    'NeuralNetworkMeanImage': _NeuralNetworkMeanImage,
    'NeuralNetworkImageScaler': _NeuralNetworkImageScaler,
    'ConvolutionLayerParams': _ConvolutionLayerParams,
    'BatchnormLayerParams': _BatchnormLayerParams,
    'ActivationParams': _ActivationParams,
    'ScaleLayerParams': _ScaleLayerParams,
    'PoolingLayerParams': _PoolingLayerParams,
    'SoftmaxLayerParams': _SoftmaxLayerParams,
    'InnerProductLayerParams': _InnerProductLayerParams,
    'AddLayerParams': _AddLayerParams,
    'MultiplyLayerParams': _MultiplyLayerParams,
    'FlattenLayerParams': _FlattenLayerParams,
    'ConcatLayerParams': _ConcatLayerParams,
    'PaddingLayerParams': _PaddingLayerParams,
    'PermuteLayerParams': _PermuteLayerParams,
    'UpsampleLayerParams': _UpsampleLayerParams,
    'L2NormalizeLayerParams': _L2NormalizeLayerParams,
    'LRNLayerParams': _LRNLayerParams,
    'AverageLayerParams': _AverageLayerParams,
    'MaxLayerParams': _MaxLayerParams,
    'MinLayerParams': _MinLayerParams,
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
# SAME padding: https://www.tensorflow.org/api_guides/python/nn
def get_pad_value(data, kernel, stride):
    """Get the pad tuple of value for SAME padding

    Parameters
    ----------
    data:
        1D input data

    kernel:
        1D input kernel

    stride:
        1D input stride

    Returns
    -------
        pad tuple of value
    """

    out = int(math.ceil(float(data) / float(stride)))
    pad = max(0, (out - 1) * stride + kernel - data)
    pad_before = pad // 2
    pad_after = pad - pad_before
    return pad_before, pad_after

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

def coreml_op_to_relay(op, inname, outname, etab):
    """Convert coreml layer to a Relay expression and update the expression table.

    Parameters
    ----------
    op: a coreml protobuf bit

    inname : str or list of str
        Name of the input Relay expression.

    outname : str
        Name of the output Relay expression.

    etab : relay.frontend.common.ExprTable
        The global expression table to be updated.
    """
    classname = type(op).__name__
    if classname not in _convert_map:
429 430
        raise tvm.error.OpNotImplemented(
            'Operator {} is not supported in frontend CoreML.'.format(classname))
431 432 433 434 435 436
    if isinstance(inname, _base.string_types):
        insym = etab.get_expr(inname)
    else:
        insym = [etab.get_expr(i) for i in inname]
    ret = _convert_map[classname](op, insym, etab)
    if outname:
437
        etab.set_expr(outname, ret, force_override=True)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452


def from_coreml(model, shape=None):
    """Convert from coreml model into Relay Function.

    Parameters
    ----------
    model:
        coremltools.models.MLModel of a NeuralNetworkClassifier

    shape : dict of str to int list/tuple, optional
        The input shapes

    Returns
    -------
453
    mod : tvm.IRModule
454
        The relay module for compilation.
455

456
    params : dict of str to tvm.nd.NDArray
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        The parameter dict to be used by Relay.
    """
    try:
        import coremltools as cm
    except ImportError:
        raise ImportError('The coremltools package must be installed')

    assert isinstance(model, cm.models.MLModel)
    spec = model.get_spec()
    modeltype = spec.WhichOneof('Type')
    assert modeltype in ['neuralNetworkClassifier', 'neuralNetwork', 'neuralNetworkRegressor']
    cc = getattr(spec, modeltype)

    etab = ExprTable()
    for i in spec.description.input:
        input_shape = shape[i.name] if shape is not None and i.name in shape else None
        etab.set_expr(i.name, _expr.var(i.name, shape=input_shape))

    for pp in cc.preprocessing:
        whichpp = pp.WhichOneof('preprocessor')
        ppmethod = getattr(pp, whichpp)
        if whichpp == 'scaler':
479 480 481
            # Be careful we maybe only preprocess one input when we have multi inputs
            # which is stored in pp.featureName. See unit testing verify_image_scaler
            # in test_forward.py for CoreML.
482
            for i in spec.description.input:
483 484 485 486 487 488 489 490
                # we have multi inputs
                if len(spec.description.input) > 1:
                    assert pp.featureName != ''
                    if i.name == pp.featureName:
                        coreml_op_to_relay(ppmethod, i.name, i.name, etab)
                else:
                    assert pp.featureName == ''
                    coreml_op_to_relay(ppmethod, i.name, i.name, etab)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        else:
            coreml_op_to_relay(ppmethod, pp.featureName, pp.featureName, etab)

    for l in cc.layers:
        layertype = l.WhichOneof('layer')
        layerop = getattr(l, layertype)
        assert len(l.output) == 1
        if len(l.input) == 1:
            coreml_op_to_relay(layerop, l.input[0], l.output[0], etab)
        else:
            coreml_op_to_relay(layerop, list(l.input), l.output[0], etab)

    outexpr = [etab.get_expr(o.name) if o.name in etab.exprs else _expr.var(o.name)
               for o in spec.description.output]
    # for now return first output
    outexpr = outexpr[0]
Zhi committed
507
    func = _function.Function(analysis.free_vars(outexpr), outexpr)
508
    params = {k:_nd.array(np.array(v, dtype=np.float32)) for k, v in etab.params.items()}
509
    return IRModule.from_expr(func), params