runtime.cc 44 KB
Newer Older
1 2
/*!
 *  Copyright (c) 2018 by Contributors
3
 * \file runtime.cc
4 5 6 7
 * \brief Generic VTA runtime in C++11.
 *
 *  The runtime depends on specific instruction
 *  stream spec as specified in hw_spec.h
8
 */
9 10 11
#include <vta/driver.h>
#include <vta/hw_spec.h>
#include <vta/runtime.h>
12
#include <dmlc/logging.h>
13
#include <tvm/runtime/c_runtime_api.h>
14

15
#include <cassert>
16
#include <cstring>
17 18 19 20 21
#include <vector>
#include <thread>
#include <memory>
#include <atomic>

22
namespace vta {
23

24 25 26 27
// Avoid bad configurations.
static_assert(VTA_UOP_WIDTH == sizeof(VTAUop) * 8,
              "VTA_UOP_WIDTH do not match VTAUop size");

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*! \brief Enable coherent access between VTA and CPU. */
static const bool kBufferCoherent = true;

/*!
 * \brief Data buffer represents data on CMA.
 */
struct DataBuffer {
  /*! \return Virtual address of the data. */
  void* virt_addr() const {
    return data_;
  }
  /*! \return Physical address of the data. */
  uint32_t phy_addr() const {
    return phy_addr_;
  }
  /*!
   * \brief Invalidate the cache of given location in data buffer.
   * \param offset The offset to the data.
   * \param size The size of the data.
   */
  void InvalidateCache(size_t offset, size_t size) {
    if (!kBufferCoherent) {
      VTAInvalidateCache(phy_addr_ + offset, size);
    }
  }
  /*!
   * \brief Invalidate the cache of certain location in data buffer.
   * \param offset The offset to the data.
   * \param size The size of the data.
   */
  void FlushCache(size_t offset, size_t size) {
    if (!kBufferCoherent) {
      VTAFlushCache(phy_addr_ + offset, size);
    }
  }
  /*!
   * \brief Allocate a buffer of a given size.
   * \param size The size of the buffer.
   */
  static DataBuffer* Alloc(size_t size) {
    void* data = VTAMemAlloc(size, 1);
    CHECK(data != nullptr);
    DataBuffer* buffer = new DataBuffer();
    buffer->data_ = data;
    buffer->phy_addr_ = VTAMemGetPhyAddr(data);
    return buffer;
  }
  /*!
   * \brief Free the data buffer.
   * \param buffer The buffer to be freed.
   */
  static void Free(DataBuffer* buffer) {
    VTAMemFree(buffer->data_);
    delete buffer;
  }
  /*!
   * \brief Create data buffer header from buffer ptr.
   * \param buffer The buffer pointer.
   * \return The corresponding data buffer header.
   */
  static DataBuffer* FromHandle(const void* buffer) {
    return const_cast<DataBuffer*>(
        reinterpret_cast<const DataBuffer*>(buffer));
  }

 private:
  /*! \brief The internal data. */
  void* data_;
  /*! \brief The physical address of the buffer, excluding header. */
  uint32_t phy_addr_;
};

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*!
 * \brief Micro op kernel.
 *  Contains functions to construct the kernel with prefix Push.
 */
class UopKernel {
 public:
  /*! \brief Loop information. */
  struct LoopEntry {
    uint32_t extent;
    uint32_t dst_factor;
    uint32_t src_factor;
    uint32_t wgt_factor;
  };
  /*!
   * \brief Construct UopKernel with signature.
   * \param signature The pointer to signature.
   * \param nbytes Number of bytes.
   */
  UopKernel(const char* signature, int nbytes)
      : signature_(signature, signature + nbytes) {
  }
  /*!
   * \brief Verify if the signature is correct.
   * \param signature Signature ptr.
   * \param nbytes Number of bytes.
   */
  bool MatchSignature(void* signature, int nbytes) const {
    if (static_cast<size_t>(nbytes) != signature_.size()) return false;
    return memcmp(signature, signature_.data(), nbytes) == 0;
  }
  /*! \return Whether the kernel is cached in SRAM. */
  bool cached() const {
    return sram_begin_ != sram_end_;
  }
  /*! \return The length of the micro op sequence. */
  size_t size() const {
    return seq_.size();
  }
  /*! \return The micro-op data. */
  const VTAUop* data() const {
    return seq_.data();
  }
  /*! \return The loop structure. */
  const std::vector<LoopEntry>& loop() const {
    return loop_;
  }
  /*!
   * \brief Declare loop start.
   * \param extent The loop extent.
   * \param dst_factor Loop factor of accum index.
   * \param src_factor Loop factor of input index
   * \param wgt_factor Loop factor of weight index.
   */
  void PushLoopBegin(uint32_t extent,
                     uint32_t dst_factor,
                     uint32_t src_factor,
                     uint32_t wgt_factor) {
    LoopEntry le;
    le.extent = extent;
    le.dst_factor = dst_factor;
    le.src_factor = src_factor;
    le.wgt_factor = wgt_factor;
162 163
    CHECK_EQ(seq_.size(), 0U);
    CHECK_LT(loop_.size(), 2U);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    loop_.push_back(le);
    ++loop_ptr_;
  }
  /*!
   * \brief Declare loop end.
   */
  void PushLoopEnd() {
    --loop_ptr_;
  }
  /*!
   * \brief Push micro op into kernel.
   * \param mode Set to GEMM mode if set to 0, ALU mode is set to 1.
   * \param reset_out Resets the accum to 0.
   * \param dst_index The accum memory index.
   * \param src_index The input memory (gemm) / accum memory (alu) index.
   * \param wgt_index The weight memory index.
   * \param opcode The ALU opcode.
   * \param use_imm Use immediate in ALU mode if set to true.
   * \param imm_val Immediate value in ALU mode.
   */
  void Push(uint32_t mode,
            uint32_t reset_out,
            uint32_t dst_index,
            uint32_t src_index,
            uint32_t wgt_index,
            uint32_t opcode,
            uint32_t use_imm,
191
            int32_t imm_val) {
192 193 194 195 196 197 198 199
    // The loop nest structure
    VerifyDep(dst_index);
    VTAUop op;
    op.dst_idx = dst_index;
    op.src_idx = src_index;
    op.wgt_idx = wgt_index;
    seq_.push_back(op);
    // Ensure that mode is consistent if set
200
    if (mode_ == 0xFFFFFFFF) {
201 202
      mode_ = mode;
    } else {
203
      CHECK(mode_ == mode);
204
    }
205 206 207 208
    // Set reset_out field if unset
    if (reset_out_ == 0xFFFFFFFF) {
      reset_out_ = reset_out;
    } else {
209
      CHECK(reset_out_ == reset_out);
210
    }
211
    // Check kernel op and imm/imm_val in ALU mode
212 213 214 215 216
    if (mode == 1) {
      if (opcode_ == 0xFFFFFFFF) {
        opcode_ = opcode;
        use_imm_ = use_imm;
        imm_val_ = imm_val;
217
      } else {
218 219 220
        CHECK(opcode_ == opcode);
        CHECK(use_imm_ == use_imm);
        CHECK(imm_val_ == imm_val);
221 222 223 224 225 226 227 228
      }
    }
  }
  /*! \brief Dump kernel micro ops to stdout. */
  void Dump() {
    uint32_t size = seq_.size();
    printf("There are %u uops\n", size);
    for (uint32_t i = 0; i < size; ++i) {
229
      printf("[%04u]\t acc=%u, inp=%u, wgt=%u\n",
230 231 232
             i,
             seq_[i].dst_idx,
             seq_[i].src_idx,
233
             seq_[i].wgt_idx);
234 235 236 237 238 239
    }
    printf("\n");
  }

 public:
  // The kernel's mode, opcode, immediate setting and value
240
  uint32_t mode_{0xFFFFFFFF};  // UOP type: 0xFFFFFFFF - unset, 0 - GEMM, 1 - ALU
241
  uint32_t opcode_{0xFFFFFFFF};
242
  uint32_t reset_out_{0xFFFFFFFF};
243
  bool use_imm_{false};
244
  int16_t imm_val_{0};
245

246 247 248 249 250
 private:
  // Verify that we don't write to the same acc_mem index two cycles in a row
  void VerifyDep(uint32_t dst_index) {
    size_t step = std::min(static_cast<size_t>(2U), seq_.size());
    for (size_t i = seq_.size() - step; i < seq_.size(); ++i) {
251
      CHECK(seq_[i].dst_idx != dst_index);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    }
  }
  // The uop buffer
  template<int, bool, bool>
  friend class UopQueue;
  friend class CommandQueue;
  // SRAM location if begin != end.
  uint32_t sram_begin_{0};
  uint32_t sram_end_{0};
  // The signature used for verification
  std::vector<char> signature_;
  // Internal sequence
  std::vector<VTAUop> seq_;
  // The loop nest structure specific to ALU instructions
  std::vector<LoopEntry> loop_;
  // The loop pointer
  size_t loop_ptr_{0};
};

/*!
 * \brief Base class of all queues to send and recv serial data.
 */
class BaseQueue {
 public:
  ~BaseQueue() {
    if (dram_buffer_ != nullptr) {
      VTAMemFree(dram_buffer_);
    }
  }
  /*! \return Content of DRAM buffer. */
  char* dram_buffer() const {
    return dram_buffer_;
  }
  /*! \return Physical address of DRAM. */
  uint32_t dram_phy_addr() const {
    return dram_phy_addr_;
  }
  /*! \return Whether there is pending information. */
  bool pending() const {
    return sram_begin_ != sram_end_;
  }
  /*! \brief Initialize the space of the buffer. */
  void InitSpace(uint32_t elem_bytes, uint32_t max_bytes, bool coherent, bool always_cache) {
    coherent_ = coherent;
    always_cache_ = always_cache;
    elem_bytes_ = elem_bytes;
    dram_buffer_ = static_cast<char*>(VTAMemAlloc(
        max_bytes, coherent || always_cache_));
300
    CHECK(dram_buffer_ != nullptr);
301
    dram_phy_addr_ = VTAMemGetPhyAddr(dram_buffer_);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  }
  /*!
   * \brief Reset the pointer of the buffer.
   *  Set SRAM pointer to be the current end.
   */
  void Reset() {
    dram_begin_ = dram_end_ = 0;
    sram_begin_ = sram_end_;
  }
  void AutoReadBarrier() {
    ReadBarrier(elem_bytes_ * 8, 0, dram_end_);
  }
  /*! \brief Writer barrier to make sure that data written by CPU is visible to VTA. */
  void ReadBarrier(uint32_t elem_bits, uint32_t dram_begin, uint32_t dram_extent) {
    if (!coherent_ && always_cache_ && dram_extent != 0) {
      dram_begin = dram_begin * elem_bits / 8;
      dram_extent = dram_extent * elem_bits / 8;
319 320
      VTAFlushCache(dram_phy_addr_ + dram_begin,
                    dram_extent);
321 322 323 324 325 326 327
    }
  }
  /*! \brief Read barrier to make sure that data written by VTA is visible to CPU. */
  void WriteBarrier(uint32_t elem_bits, uint32_t dram_begin, uint32_t dram_extent) {
    if (!coherent_ && always_cache_ && dram_extent != 0) {
      dram_begin = dram_begin * elem_bits / 8;
      dram_extent = dram_extent * elem_bits / 8;
328 329
      VTAInvalidateCache(dram_phy_addr_ + dram_begin,
                         dram_extent);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    }
  }

 protected:
  // Cache coherence access
  bool coherent_{false};
  // Make the buffer cacheable
  bool always_cache_{false};
  // Element bytes
  uint32_t elem_bytes_{0};
  // Begin location of current SRAM read in FIFO mode
  uint32_t sram_begin_{0};
  // End location of current SRAM write in FIFO mode
  uint32_t sram_end_{0};
  // The current pending offset in DRAM in FIFO mode
  uint32_t dram_begin_{0};
  // The current pending offset in DRAM in FIFO mode
  uint32_t dram_end_{0};
  // The buffer in DRAM
  char* dram_buffer_{nullptr};
  // Physics address of the buffer
  uint32_t dram_phy_addr_;
};

/*!
 * \brief Micro op buffer that manages the micro op cache.
 */
template<int kMaxBytes, bool kCoherent, bool kAlwaysCache>
class UopQueue : public BaseQueue {
 public:
  void InitSpace() {
    BaseQueue::InitSpace(kElemBytes, kMaxBytes, kCoherent, kAlwaysCache);
  }
  // Push data to the queue
  template<typename FAutoSync>
  void Push(UopKernel* kernel, FAutoSync fautosync) {
    if (kernel->cached()) return;
    size_t num_op = kernel->size();
    if (dram_end_ + num_op > kMaxElems) {
      fautosync();
370
      CHECK(dram_end_ <= kMaxElems);
371
    }
372
    CHECK(num_op <= kMaxNumUop);
373
    uint32_t uop_begin = 0;
374
    if (sram_end_ + num_op > kMaxNumUop) {
375 376
      // Need to evict
      cache_ptr_ = 0;
377
      sram_begin_ = 0;
378 379 380 381 382 383 384
      sram_end_ = num_op;
    } else {
      uop_begin = sram_end_;
      sram_end_ += num_op;
    }
    // Simple eviction policy
    uint32_t evict_begin = cache_ptr_;
385
    for (; cache_ptr_ < cache_.size(); ++cache_ptr_) {
386 387 388 389 390 391 392 393 394 395
      if (cache_[cache_ptr_]->sram_begin_ >= sram_end_) break;
      cache_[cache_ptr_]->sram_begin_ = 0;
      cache_[cache_ptr_]->sram_end_ = 0;
    }
    memcpy(dram_buffer_ + dram_end_ * kElemBytes,
           kernel->data(),
           num_op * kElemBytes);
    dram_end_ += num_op;
    kernel->sram_begin_ = uop_begin;
    kernel->sram_end_ = sram_end_;
396
    CHECK(kernel->cached());
397
    CHECK(uop_begin != sram_end_);
398 399 400 401 402 403 404
    cache_.insert(cache_.begin() + cache_ptr_, kernel);
    cache_.erase(cache_.begin() + evict_begin, cache_.begin() + cache_ptr_);
    cache_ptr_ = evict_begin + 1;
  }
  // Flush as weight load
  void FlushUopLoad(VTAMemInsn* insn) {
    if (sram_begin_ != sram_end_) {
405
      CHECK((dram_end_ - dram_begin_) == (sram_end_ - sram_begin_));
406
      insn->memory_type = VTA_MEM_ID_UOP;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
      insn->sram_base = sram_begin_;
      insn->dram_base = dram_phy_addr_ / kElemBytes + dram_begin_;
      insn->y_size = 1;
      insn->x_size = (dram_end_ - dram_begin_);
      insn->x_stride = (dram_end_ - dram_begin_);
      insn->y_pad_0 = 0;
      insn->y_pad_1 = 0;
      insn->x_pad_0 = 0;
      insn->x_pad_1 = 0;
      // Reset indices
      sram_begin_ = sram_end_;
      dram_begin_ = dram_end_;
    }
  }

 private:
  // Cache pointer
  uint32_t cache_ptr_{0};
  // Cached ring, sorted by sram_begin
  std::vector<UopKernel*> cache_;
  // Constants
  static constexpr int kElemBytes = sizeof(VTAUop);
429
  static constexpr int kMaxNumUop = VTA_UOP_BUFF_DEPTH;
430 431 432 433 434 435 436 437 438 439
  static constexpr int kMaxElems = kMaxBytes / kElemBytes;
};

// Internal kernel structure
class UopKernelMap {
 public:
  // Simple hash map
  UopKernel** Get(void* signature,
                  int nbytes) {
    uint32_t key = 0;
440
    CHECK(nbytes == 0 || nbytes == sizeof(int));
441 442 443 444
    if (nbytes == sizeof(int)) {
      memcpy(&key, signature, sizeof(int));
      key = key + 1;
    }
445
    CHECK_LT(key, 100);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    if (kmap_.size() <= key) {
      kmap_.resize(key + 1, nullptr);
    }
    return &(kmap_[key]);
  }

 private:
  std::vector<UopKernel*> kmap_;
};

enum PipelineStage : int {
  kNoneStage = 0,
  kLoadStage = 1,
  kComputeStage = 2,
  kStoreStage = 3
};

// Instruction Queue
template<int kMaxBytes, bool kCoherent, bool kAlwaysCache>
class InsnQueue : public BaseQueue {
 public:
  /*! \brief Initialize the space. */
  void InitSpace() {
    BaseQueue::InitSpace(kElemBytes, kMaxBytes, kCoherent, kAlwaysCache);
    // Initialize the stage
    std::fill(pending_pop_prev_, pending_pop_prev_ + 4, 0);
    std::fill(pending_pop_next_, pending_pop_next_ + 4, 0);
  }
  /*! \return The data pointer. */
  VTAGenericInsn* data() {
    return reinterpret_cast<VTAGenericInsn*>(dram_buffer_);
  }
  /*! \return Number of instructions. */
  uint32_t count() {
    return dram_end_;
  }
  // Insert dependency push of load
  void DepPop(int from, int to) {
    // NOTE: This instruction executes on queue[to]
    if (from < to) {
      if (pending_pop_prev_[to]) {
        this->CommitPendingPop(to);
      }
      pending_pop_prev_[to] = 1;
    } else {
      if (pending_pop_next_[to]) {
        this->CommitPendingPop(to);
      }
      pending_pop_next_[to] = 1;
    }
    // Impossible condition
497 498
    CHECK(from != kLoadStage || to != kStoreStage);
    CHECK(to != kLoadStage || to != kComputeStage);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  }
  // Insert dependency push of load
  void DepPush(int from, int to) {
    // NOTE: this instruction executes on queue[from]
    this->CommitPendingPop(from);
    if (dram_end_ != 0) {
      VTAMemInsn* mptr =
          reinterpret_cast<VTAMemInsn*>(dram_buffer_) + dram_end_ - 1;
      if (GetPipelineStage(mptr) == from) {
        if (from < to && !mptr->push_next_dep) {
          // push(LD->C) or push(C->ST)
          mptr->push_next_dep = true; return;
        } else if (from > to && !mptr->push_prev_dep) {
          // push(C->LD) or push(ST->C)
          mptr->push_prev_dep = true; return;
        }
      }
    }
    if (from < to) {
      // Push next dep
      PushNoop(from, false, true, false, false);
    } else {
      // Push prev dep
      PushNoop(from, true, false, false, false);
    }
  }
  // Create a new instruction for a GEMM stage
  VTAGemInsn* CreateGemInsn() {
    return reinterpret_cast<VTAGemInsn*>(
        Create(kComputeStage));
  }
  // Create a new instruction for a ALU stage
  VTAAluInsn* CreateAluInsn() {
    return reinterpret_cast<VTAAluInsn*>(
        Create(kComputeStage));
  }
  // Create a new instruction for a memory stage
  VTAMemInsn* CreateMemInsn(int memory_type) {
    return reinterpret_cast<VTAMemInsn*>(
        Create(GetMemPipelineStage(memory_type)));
  }
  // create a new instruction for a store stage
  VTAMemInsn* CreateStoreInsn() {
    return reinterpret_cast<VTAMemInsn*>(
        Create(kStoreStage));
  }
  // Rewrite instruction stream to force serial execution
  void RewriteForceSerial() {
    int insn_count = count();
    VTAMemInsn* mem_ptr = reinterpret_cast<VTAMemInsn*>(data());
    for (int i = 1; i < insn_count; ++i) {
      PipelineStage prev = GetPipelineStage(mem_ptr + i - 1);
      PipelineStage now = GetPipelineStage(mem_ptr + i);
552
      if (prev == kLoadStage && now == kComputeStage) {
553 554 555 556
        mem_ptr[i - 1].push_prev_dep = false;
        mem_ptr[i - 1].push_next_dep = true;
        mem_ptr[i].pop_prev_dep = true;
        mem_ptr[i].pop_next_dep = false;
557
      } else if (prev == kComputeStage && now == kLoadStage) {
558 559 560 561
        mem_ptr[i - 1].push_prev_dep = true;
        mem_ptr[i - 1].push_next_dep = false;
        mem_ptr[i].pop_prev_dep = false;
        mem_ptr[i].pop_next_dep = true;
562
      } else if (prev == kStoreStage && now == kComputeStage) {
563 564 565 566
        mem_ptr[i - 1].push_prev_dep = true;
        mem_ptr[i - 1].push_next_dep = false;
        mem_ptr[i].pop_prev_dep = false;
        mem_ptr[i].pop_next_dep = true;
567
      } else if (prev == kComputeStage && now == kStoreStage) {
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        mem_ptr[i - 1].push_prev_dep = false;
        mem_ptr[i - 1].push_next_dep = true;
        mem_ptr[i].pop_prev_dep = true;
        mem_ptr[i].pop_next_dep = false;
      } else {
        mem_ptr[i - 1].push_prev_dep = false;
        mem_ptr[i - 1].push_next_dep = false;
        mem_ptr[i].pop_prev_dep = false;
        mem_ptr[i].pop_next_dep = false;
      }
    }
  }

  // Helper function: Get Opcode string
  const char* getOpcodeString(int opcode, bool use_imm) {
      // The string name
584
      if (opcode == VTA_ALU_OPCODE_MIN) {
585 586 587 588 589
          if (use_imm) {
              return "min imm";
          } else {
              return "min";
          }
590
      } else if (opcode == VTA_ALU_OPCODE_MAX) {
591 592 593 594 595
          if (use_imm) {
              return "max imm";
          } else {
              return "max";
          }
596
      } else if (opcode == VTA_ALU_OPCODE_ADD) {
597 598 599 600 601
          if (use_imm) {
              return "add imm";
          } else {
              return "add";
          }
602
      } else if (opcode == VTA_ALU_OPCODE_SHR) {
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
          return "shr";
      }

      return "unknown op";
  }

  // Dump instructions in the queue
  void DumpInsn() {
    // Keep tabs on dependence queues
    int l2g_queue = 0;
    int g2l_queue = 0;
    int s2g_queue = 0;
    int g2s_queue = 0;
    // Converter
    union VTAInsn c;
    // Iterate over all instructions
    int insn_count = count();
    const VTAGenericInsn* insn = data();
    printf("There are %u instructions\n", insn_count);
    for (int i = 0; i < insn_count; ++i) {
      // Fetch instruction and decode opcode
      c.generic = insn[i];
      printf("INSTRUCTION %u: ", i);
626
      if (c.mem.opcode == VTA_OPCODE_LOAD || c.mem.opcode == VTA_OPCODE_STORE) {
627
        if (c.mem.x_size == 0) {
628
          if (c.mem.opcode == VTA_OPCODE_STORE) {
629
            printf("NOP-STORE-STAGE\n");
630
          } else if (GetMemPipelineStage(c.mem.memory_type) == kComputeStage) {
631 632 633 634 635 636 637 638 639 640
            printf("NOP-COMPUTE-STAGE\n");
          } else {
            printf("NOP-MEMORY-STAGE\n");
          }
          printf("\tdep - pop prev: %d, pop next: %d, push prev: %d, push next: %d\n",
                 static_cast<int>(c.mem.pop_prev_dep),
                 static_cast<int>(c.mem.pop_next_dep),
                 static_cast<int>(c.mem.push_prev_dep),
                 static_cast<int>(c.mem.push_next_dep));
          // Count status in queues
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
          if (c.mem.opcode == VTA_OPCODE_STORE) {
            CHECK(c.mem.pop_next_dep == false);
            CHECK(c.mem.push_next_dep == false);
            if (c.mem.pop_prev_dep) g2s_queue--;
            if (c.mem.push_prev_dep) s2g_queue++;
          } else if (c.mem.opcode == VTA_OPCODE_LOAD &&
                     (c.mem.memory_type == VTA_MEM_ID_INP ||
                      c.mem.memory_type == VTA_MEM_ID_WGT) ) {
            CHECK(c.mem.pop_prev_dep == false);
            CHECK(c.mem.push_prev_dep == false);
            if (c.mem.pop_next_dep) g2l_queue--;
            if (c.mem.push_next_dep) l2g_queue++;
          } else {
            if (c.mem.pop_prev_dep) l2g_queue--;
            if (c.mem.push_prev_dep) g2l_queue++;
            if (c.mem.pop_next_dep) s2g_queue--;
            if (c.mem.push_next_dep) g2s_queue++;
658 659 660 661 662 663
          }
          printf("\tl2g_queue = %d, g2l_queue = %d\n", l2g_queue, g2l_queue);
          printf("\ts2g_queue = %d, g2s_queue = %d\n", s2g_queue, g2s_queue);
          continue;
        }
        // Print instruction field information
664
        if (c.mem.opcode == VTA_OPCODE_LOAD) {
665 666 667 668 669
          printf("LOAD ");
          if (c.mem.memory_type == VTA_MEM_ID_UOP) printf("UOP\n");
          if (c.mem.memory_type == VTA_MEM_ID_WGT) printf("WGT\n");
          if (c.mem.memory_type == VTA_MEM_ID_INP) printf("INP\n");
          if (c.mem.memory_type == VTA_MEM_ID_ACC) printf("ACC\n");
670
        }
671
        if (c.mem.opcode == VTA_OPCODE_STORE) {
672
          printf("STORE:\n");
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        }
        printf("\tdep - pop prev: %d, pop next: %d, push prev: %d, push next: %d\n",
               static_cast<int>(c.mem.pop_prev_dep),
               static_cast<int>(c.mem.pop_next_dep),
               static_cast<int>(c.mem.push_prev_dep),
               static_cast<int>(c.mem.push_next_dep));
        printf("\tDRAM: 0x%08x, SRAM:0x%04x\n",
               static_cast<int>(c.mem.dram_base),
               static_cast<int>(c.mem.sram_base));
        printf("\ty: size=%d, pad=[%d, %d]\n",
               static_cast<int>(c.mem.y_size),
               static_cast<int>(c.mem.y_pad_0),
               static_cast<int>(c.mem.y_pad_1));
        printf("\tx: size=%d, stride=%d, pad=[%d, %d]\n",
               static_cast<int>(c.mem.x_size),
               static_cast<int>(c.mem.x_stride),
               static_cast<int>(c.mem.x_pad_0),
               static_cast<int>(c.mem.x_pad_1));
691
      } else if (c.mem.opcode == VTA_OPCODE_GEMM) {
692 693 694 695 696 697 698 699
        // Print instruction field information
        printf("GEMM\n");

        printf("\tdep - pop prev: %d, pop next: %d, push prev: %d, push next: %d\n",
               static_cast<int>(c.mem.pop_prev_dep),
               static_cast<int>(c.mem.pop_next_dep),
               static_cast<int>(c.mem.push_prev_dep),
               static_cast<int>(c.mem.push_next_dep));
700
        printf("\treset_out: %d\n", static_cast<int>(c.gemm.reset_reg));
701 702 703 704 705 706 707 708 709 710 711 712 713
        printf("\trange (%d, %d)\n",
               static_cast<int>(c.gemm.uop_bgn),
               static_cast<int>(c.gemm.uop_end));
        printf("\touter loop - iter: %d, wgt: %d, inp: %d, acc: %d\n",
               static_cast<int>(c.gemm.iter_out),
               static_cast<int>(c.gemm.wgt_factor_out),
               static_cast<int>(c.gemm.src_factor_out),
               static_cast<int>(c.gemm.dst_factor_out));
        printf("\tinner loop - iter: %d, wgt: %d, inp: %d, acc: %d\n",
               static_cast<int>(c.gemm.iter_in),
               static_cast<int>(c.gemm.wgt_factor_in),
               static_cast<int>(c.gemm.src_factor_in),
               static_cast<int>(c.gemm.dst_factor_in));
714
      } else if (c.mem.opcode == VTA_OPCODE_ALU) {
715 716 717 718 719 720 721
        // Print instruction field information
        printf("ALU - %s\n", getOpcodeString(c.alu.alu_opcode, c.alu.use_imm));
        printf("\tdep - pop prev: %d, pop next: %d, push prev: %d, push next: %d\n",
               static_cast<int>(c.mem.pop_prev_dep),
               static_cast<int>(c.mem.pop_next_dep),
               static_cast<int>(c.mem.push_prev_dep),
               static_cast<int>(c.mem.push_next_dep));
722
        printf("\treset_out: %d\n", static_cast<int>(c.alu.reset_reg));
723 724 725 726 727 728 729 730 731 732 733
        printf("\trange (%d, %d)\n",
               static_cast<int>(c.alu.uop_bgn),
               static_cast<int>(c.alu.uop_end));
        printf("\touter loop - iter: %d, dst: %d, src: %d\n",
               static_cast<int>(c.alu.iter_out),
               static_cast<int>(c.alu.dst_factor_out),
               static_cast<int>(c.alu.src_factor_out));
        printf("\tinner loop - iter: %d, dst: %d, src: %d\n",
               static_cast<int>(c.alu.iter_in),
               static_cast<int>(c.alu.dst_factor_in),
               static_cast<int>(c.alu.src_factor_in));
734
      } else if (c.mem.opcode == VTA_OPCODE_FINISH) {
735 736 737 738
        printf("FINISH\n");
      }

      // Count status in queues
739 740
      if (c.mem.opcode == VTA_OPCODE_LOAD || c.mem.opcode == VTA_OPCODE_STORE) {
        if (c.mem.opcode == VTA_OPCODE_STORE) {
741 742
            CHECK(c.mem.pop_next_dep == false);
            CHECK(c.mem.push_next_dep == false);
743 744
            if (c.mem.pop_prev_dep) g2s_queue--;
            if (c.mem.push_prev_dep) s2g_queue++;
745 746 747
        } else if (c.mem.opcode == VTA_OPCODE_LOAD &&
                   (c.mem.memory_type == VTA_MEM_ID_INP ||
                    c.mem.memory_type == VTA_MEM_ID_WGT) ) {
748 749
            CHECK(c.mem.pop_prev_dep == false);
            CHECK(c.mem.push_prev_dep == false);
750 751 752 753 754 755 756 757
            if (c.mem.pop_next_dep) g2l_queue--;
            if (c.mem.push_next_dep) l2g_queue++;
        } else {
            if (c.mem.pop_prev_dep) l2g_queue--;
            if (c.mem.push_prev_dep) g2l_queue++;
            if (c.mem.pop_next_dep) s2g_queue--;
            if (c.mem.push_next_dep) g2s_queue++;
        }
758 759
      } else if (c.mem.opcode == VTA_OPCODE_GEMM ||
                 c.mem.opcode == VTA_OPCODE_ALU) {
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        // Print instruction field information
        if (c.gemm.pop_prev_dep) l2g_queue--;
        if (c.gemm.push_prev_dep) g2l_queue++;
        if (c.gemm.pop_next_dep) s2g_queue--;
        if (c.gemm.push_next_dep) g2s_queue++;
      }
      printf("\tl2g_queue = %d, g2l_queue = %d\n", l2g_queue, g2l_queue);
      printf("\ts2g_queue = %d, g2s_queue = %d\n", s2g_queue, g2s_queue);
    }
  }

  // Commit all pending pop of corresponding stage
  void CommitPendingPop(int stage) {
    // Handle the LD<->compute queue
    // NOTE: pop executes on target(stage)
775
    CHECK(stage > 0 && stage < 4);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    if (pending_pop_prev_[stage] ||
        pending_pop_next_[stage]) {
      PushNoop(stage, false, false,
               pending_pop_prev_[stage],
               pending_pop_next_[stage]);
      pending_pop_prev_[stage] = 0;
      pending_pop_next_[stage] = 0;
    }
  }

  void CommitPending() {
    for (int i = kLoadStage; i <= kStoreStage; ++i) {
      CommitPendingPop(i);
    }
  }

  bool PendingPop() {
    for (int i = kLoadStage; i <= kStoreStage; ++i) {
      if (pending_pop_prev_[i]) return true;
      if (pending_pop_next_[i]) return true;
    }
    return false;
  }

 protected:
  /*! \return Add new instruction to the buffer. */
  VTAGenericInsn* NextInsn() {
    VTAGenericInsn* insn  = data() + dram_end_;
    ++dram_end_;
805
    CHECK(dram_end_ < kMaxElems);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    return insn;
  }
  // Create a new instruction for a given stage
  VTAGenericInsn* Create(PipelineStage stage) {
    VTAGenericInsn* gptr = NextInsn();
    VTAMemInsn* mptr = reinterpret_cast<VTAMemInsn*>(gptr);
    mptr->pop_prev_dep = pending_pop_prev_[stage];
    mptr->pop_next_dep = pending_pop_next_[stage];
    mptr->push_prev_dep = false;
    mptr->push_next_dep = false;
    pending_pop_prev_[stage] = 0;
    pending_pop_next_[stage] = 0;
    return gptr;
  }
  // Get stage of the memory
  static PipelineStage GetMemPipelineStage(int memory_type) {
822 823
    if (memory_type == VTA_MEM_ID_ACC) return kComputeStage;
    if (memory_type == VTA_MEM_ID_UOP) return kComputeStage;
824 825 826 827
    return kLoadStage;
  }
  // Get stage of the computation
  static PipelineStage GetPipelineStage(VTAMemInsn* insn) {
828 829 830
    if (insn->opcode == VTA_OPCODE_GEMM) return kComputeStage;
    if (insn->opcode == VTA_OPCODE_ALU) return kComputeStage;
    if (insn->opcode == VTA_OPCODE_LOAD) {
831
      if (insn->x_size == 0) return kNoneStage;
832 833
      if (insn->memory_type == VTA_MEM_ID_ACC) return kComputeStage;
      if (insn->memory_type == VTA_MEM_ID_UOP) return kComputeStage;
834 835
      return kLoadStage;
    }
836 837 838
    if (insn->opcode == VTA_OPCODE_STORE) {
      // FIXME: Right now memory_type is a 2-bit field which means that
      //        VTA_MEM_ID_OUT will appear as 0. For now we'll refrain from
839
      //        checking the memory_type to avoid an CHECKion error...
840 841
      return kStoreStage;
    }
842
    LOG(FATAL) << "not reached";
843 844 845 846 847 848 849
    return kNoneStage;
  }
  // Push no-op
  void PushNoop(int stage,
                bool push_prev_dep, bool push_next_dep,
                bool pop_prev_dep, bool pop_next_dep) {
    VTAMemInsn* insn = reinterpret_cast<VTAMemInsn*>(NextInsn());
850
    insn->opcode = (stage == kStoreStage ? VTA_OPCODE_STORE : VTA_OPCODE_LOAD);
851 852 853 854 855 856 857 858 859 860 861 862 863
    insn->push_prev_dep = push_prev_dep;
    insn->push_next_dep = push_next_dep;
    insn->pop_prev_dep = pop_prev_dep;
    insn->pop_next_dep = pop_next_dep;
    insn->sram_base = 0;
    insn->dram_base = 0;
    insn->y_size = 0;
    insn->x_size = 0;
    insn->x_stride = 0;
    insn->y_pad_0 = 0;
    insn->y_pad_1 = 0;
    insn->x_pad_0 = 0;
    insn->x_pad_1 = 0;
864
    insn->memory_type = (stage == kLoadStage ? VTA_MEM_ID_INP : VTA_MEM_ID_UOP);
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
  }

 private:
  // Pending pop of each isntruction queue, qid=0 is not used
  int pending_pop_prev_[4];
  int pending_pop_next_[4];
  static constexpr int kElemBytes = sizeof(VTAGenericInsn);
  static constexpr int kMaxElems = kMaxBytes / kElemBytes;
};

/*!
 * \brief The command queue object that handles the request.
 */
class CommandQueue {
 public:
  CommandQueue() {
    this->InitSpace();
  }
  void InitSpace() {
    uop_queue_.InitSpace();
    insn_queue_.InitSpace();
886
    device_ = VTADeviceAlloc();
887
    CHECK(device_ != nullptr);
888 889 890 891
    printf("Initialize VTACommandHandle...\n");
  }

  ~CommandQueue() {
892
    VTADeviceFree(device_);
893 894 895 896
    printf("Close VTACommandhandle...\n");
  }

  uint32_t GetElemBytes(uint32_t memory_id) {
897 898 899 900 901 902
    switch (memory_id) {
      case VTA_MEM_ID_UOP: return VTA_UOP_ELEM_BYTES;
      case VTA_MEM_ID_INP: return VTA_INP_ELEM_BYTES;
      case VTA_MEM_ID_WGT: return VTA_WGT_ELEM_BYTES;
      case VTA_MEM_ID_ACC: return VTA_ACC_ELEM_BYTES;
      case VTA_MEM_ID_OUT: return VTA_INP_ELEM_BYTES;
903 904
      default: break;
    }
905
    LOG(FATAL) << "Memory id not recognized:" << memory_id;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
    return 0;
  }

  void LoadBuffer2D(void* src_dram_addr,
                    uint32_t src_elem_offset,
                    uint32_t x_size,
                    uint32_t y_size,
                    uint32_t x_stride,
                    uint32_t x_pad_before,
                    uint32_t y_pad_before,
                    uint32_t x_pad_after,
                    uint32_t y_pad_after,
                    uint32_t dst_sram_index,
                    uint32_t dst_memory_type) {
    VTAMemInsn* insn = insn_queue_.CreateMemInsn(dst_memory_type);
921
    insn->opcode = VTA_OPCODE_LOAD;
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
    insn->memory_type = dst_memory_type;
    insn->sram_base = dst_sram_index;
    DataBuffer* src = DataBuffer::FromHandle(src_dram_addr);
    insn->dram_base = src->phy_addr() / GetElemBytes(dst_memory_type) + src_elem_offset;
    insn->y_size = y_size;
    insn->x_size = x_size;
    insn->x_stride = x_stride;
    insn->y_pad_0 = y_pad_before;
    insn->y_pad_1 = y_pad_after;
    insn->x_pad_0 = x_pad_before;
    insn->x_pad_1 = x_pad_after;
    this->CheckInsnOverFlow();
  }

  void StoreBuffer2D(uint32_t src_sram_index,
                     uint32_t src_memory_type,
                     void* dst_dram_addr,
                     uint32_t dst_elem_offset,
                     uint32_t x_size,
                     uint32_t y_size,
                     uint32_t x_stride) {
    VTAMemInsn* insn = insn_queue_.CreateStoreInsn();
944
    insn->opcode = VTA_OPCODE_STORE;
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    insn->memory_type = src_memory_type;
    insn->sram_base = src_sram_index;
    DataBuffer* dst = DataBuffer::FromHandle(dst_dram_addr);
    insn->dram_base = dst->phy_addr() / GetElemBytes(src_memory_type) + dst_elem_offset;
    insn->y_size = y_size;
    insn->x_size = x_size;
    insn->x_stride = x_stride;
    insn->y_pad_0 = 0;
    insn->y_pad_1 = 0;
    insn->x_pad_0 = 0;
    insn->x_pad_1 = 0;
    this->CheckInsnOverFlow();
  }

  void DepPush(int from_qid, int to_qid) {
    insn_queue_.DepPush(from_qid, to_qid);
  }

  void DepPop(int from_qid, int to_qid) {
    insn_queue_.DepPop(from_qid, to_qid);
  }

  void ReadBarrier(void* buffer, uint32_t elem_bits, uint32_t start, uint32_t extent) {
    if (!(debug_flag_ & VTA_DEBUG_SKIP_READ_BARRIER)) {
      uint32_t elem_bytes = (elem_bits + 8 - 1) / 8;
      DataBuffer::FromHandle(buffer)->FlushCache(
          elem_bytes * start, elem_bytes * extent);
    }
  }

  void WriteBarrier(void* buffer, uint32_t elem_bits, uint32_t start, uint32_t extent) {
    if (!(debug_flag_ & VTA_DEBUG_SKIP_WRITE_BARRIER)) {
      uint32_t elem_bytes = (elem_bits + 8 - 1) / 8;
      DataBuffer::FromHandle(buffer)->InvalidateCache(
          elem_bytes * start, elem_bytes * extent);
    }
  }

  void Synchronize(uint32_t wait_cycles) {
    // Insert dependences to force serialization
    if (debug_flag_ & VTA_DEBUG_FORCE_SERIAL) {
      insn_queue_.RewriteForceSerial();
    }
    // This will issue finish after last store finishes
    insn_queue_.DepPush(kStoreStage, kComputeStage);
    insn_queue_.DepPush(kLoadStage, kComputeStage);
    insn_queue_.DepPop(kStoreStage, kComputeStage);
    insn_queue_.DepPop(kLoadStage, kComputeStage);
    insn_queue_.CommitPendingPop(kComputeStage);
    // NOTE: FINISH cannot contain pop
    VTAGemInsn* insn = insn_queue_.CreateGemInsn();
996
    insn->opcode = VTA_OPCODE_FINISH;
997
    CHECK(!insn_queue_.PendingPop());
998 999 1000 1001 1002 1003 1004 1005 1006 1007
    // Check if there are no instruction to execute at all
    if (insn_queue_.count() == 0) return;
    // Synchronization for the queues
    uop_queue_.AutoReadBarrier();
    insn_queue_.AutoReadBarrier();
    // Dump instructions if debug enabled
    if (debug_flag_ & VTA_DEBUG_DUMP_INSN) {
      insn_queue_.DumpInsn();
    }
    // Make sure that the last instruction is a finish instruction
1008
    CHECK(reinterpret_cast<VTAMemInsn*>(
1009
        insn_queue_.data())[insn_queue_.count()-1].opcode == VTA_OPCODE_FINISH);
1010 1011

    // Make sure that we don't exceed contiguous physical memory limits
1012
    CHECK(insn_queue_.count() * sizeof(VTAGenericInsn) < VTA_MAX_XFER);
1013 1014 1015 1016 1017
    int timeout = VTADeviceRun(
        device_,
        insn_queue_.dram_phy_addr(),
        insn_queue_.count(),
        wait_cycles);
1018
    CHECK_EQ(timeout, 0);
1019 1020 1021 1022 1023 1024 1025
    // Reset buffers
    uop_queue_.Reset();
    insn_queue_.Reset();
  }

  // Get record kernel
  UopKernel* record_kernel() const {
1026
    CHECK(record_kernel_ != nullptr);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    return record_kernel_;
  }

  // Set debug flag
  void SetDebugFlag(int debug_flag) {
    debug_flag_ = debug_flag;
  }

  void PushGEMMOp(void** uop_handle,
                  int (*finit)(void*),
                  void* signature,
                  int nbytes) {
    UopKernelMap** uptr = reinterpret_cast<UopKernelMap**>(uop_handle);
    if (uptr[0] == nullptr) {
      uptr[0] = new UopKernelMap();
    }
    UopKernel** kptr = uptr[0]->Get(signature, nbytes);
    if (kptr[0] == nullptr) {
      record_kernel_ = new UopKernel(static_cast<char*>(signature), nbytes);
1046
      CHECK_EQ((*finit)(signature), 0);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
      kptr[0] = static_cast<UopKernel*>(record_kernel_);
      if (debug_flag_ & VTA_DEBUG_DUMP_UOP) {
        record_kernel_->Dump();
      }
      record_kernel_ = nullptr;
    }
    this->PushGEMMOp(static_cast<UopKernel*>(kptr[0]));
    this->CheckInsnOverFlow();
  }

  void PushALUUop(void** uop_handle,
                  int (*finit)(void*),
                  void* signature,
                  int nbytes) {
    UopKernelMap** uptr = reinterpret_cast<UopKernelMap**>(uop_handle);
    if (uptr[0] == nullptr) {
      uptr[0] = new UopKernelMap();
    }
    UopKernel** kptr = uptr[0]->Get(signature, nbytes);
    if (kptr[0] == nullptr) {
      record_kernel_ = new UopKernel(static_cast<char*>(signature), nbytes);
1068
      CHECK_EQ((*finit)(signature), 0);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
      kptr[0] = static_cast<UopKernel*>(record_kernel_);
      if (debug_flag_ & VTA_DEBUG_DUMP_UOP) {
        record_kernel_->Dump();
      }
      record_kernel_ = nullptr;
    }
    this->PushALUUop(static_cast<UopKernel*>(kptr[0]));
    this->CheckInsnOverFlow();
  }

  static std::shared_ptr<CommandQueue>& ThreadLocal() {
    static std::shared_ptr<CommandQueue> inst =
        std::make_shared<CommandQueue>();
1082 1083 1084
    if (inst == nullptr) {
      inst = std::make_shared<CommandQueue>();
    }
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    return inst;
  }

  static void Shutdown() {
    ThreadLocal().reset();
  }

 private:
  // Push GEMM uop to the command buffer
  void PushGEMMOp(UopKernel* kernel) {
    uop_queue_.Push(kernel,
                    [this]() { this->AutoSync(); });
    if (uop_queue_.pending()) {
1098 1099
      VTAMemInsn* insn = insn_queue_.CreateMemInsn(VTA_MEM_ID_UOP);
      insn->opcode = VTA_OPCODE_LOAD;
1100 1101 1102
      uop_queue_.FlushUopLoad(insn);
    }
    VTAGemInsn* insn = insn_queue_.CreateGemInsn();
1103
    insn->opcode = VTA_OPCODE_GEMM;
1104
    insn->reset_reg = kernel->reset_out_;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    insn->uop_bgn = kernel->sram_begin_;
    insn->uop_end = kernel->sram_end_;
    const std::vector<UopKernel::LoopEntry> &loop = kernel->loop();
    if (loop.size() > 0) {
      insn->iter_out = loop[0].extent;
      insn->wgt_factor_out = loop[0].wgt_factor;
      insn->src_factor_out = loop[0].src_factor;
      insn->dst_factor_out = loop[0].dst_factor;
    } else {
      insn->iter_out = 1;
      insn->wgt_factor_out = 0;
      insn->src_factor_out = 0;
      insn->dst_factor_out = 0;
    }
    if (loop.size() > 1) {
      insn->iter_in = loop[1].extent;
      insn->wgt_factor_in = loop[1].wgt_factor;
      insn->src_factor_in = loop[1].src_factor;
      insn->dst_factor_in = loop[1].dst_factor;
    } else {
      insn->iter_in = 1;
      insn->wgt_factor_in = 0;
      insn->src_factor_in = 0;
      insn->dst_factor_in = 0;
    }
  }

  // Push ALU uop to the command buffer
  void PushALUUop(UopKernel* kernel) {
    uop_queue_.Push(kernel,
                    [this]() { this->AutoSync(); });
    if (uop_queue_.pending()) {
1137 1138
      VTAMemInsn* insn = insn_queue_.CreateMemInsn(VTA_MEM_ID_UOP);
      insn->opcode = VTA_OPCODE_LOAD;
1139 1140 1141
      uop_queue_.FlushUopLoad(insn);
    }
    VTAAluInsn* insn = insn_queue_.CreateAluInsn();
1142
    insn->opcode = VTA_OPCODE_ALU;
1143
    insn->reset_reg = kernel->reset_out_;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    insn->uop_bgn = kernel->sram_begin_;
    insn->uop_end = kernel->sram_end_;
    insn->alu_opcode = kernel->opcode_;
    insn->use_imm = kernel->use_imm_;
    insn->imm = kernel->imm_val_;
    const std::vector<UopKernel::LoopEntry> &loop = kernel->loop();
    if (loop.size() == 0) {
      insn->iter_out = 1;
      insn->dst_factor_out = 0;
      insn->src_factor_out = 0;
      insn->iter_in = 1;
      insn->dst_factor_in = 0;
      insn->src_factor_in = 0;
    } else if (loop.size() == 1) {
      insn->iter_out = 1;
      insn->dst_factor_out = 0;
      insn->src_factor_out = 0;
      insn->iter_in = loop[0].extent;
      insn->dst_factor_in = loop[0].dst_factor;
      insn->src_factor_in = loop[0].src_factor;
    } else {
      insn->iter_out = loop[0].extent;
      insn->dst_factor_out = loop[0].dst_factor;
      insn->src_factor_out = loop[0].src_factor;
      insn->iter_in = loop[1].extent;
      insn->dst_factor_in = loop[1].dst_factor;
      insn->src_factor_in = loop[1].src_factor;
    }
  }

  void CheckInsnOverFlow() {
    // At each API call, we can at most commit:
    // one pending store, one pending load, and one uop
1177
    if ((insn_queue_.count() + 4) * sizeof(VTAGenericInsn) >= VTA_MAX_XFER) {
1178 1179 1180 1181 1182 1183 1184
      this->AutoSync();
    }
  }
  // Auto sync when instruction overflow
  void AutoSync() {
    this->Synchronize(1 << 31);
  }
1185

1186 1187 1188 1189 1190
  // Internal debug flag
  int debug_flag_{0};
  // The kernel we currently recording
  UopKernel* record_kernel_{nullptr};
  // Micro op queue
1191
  UopQueue<VTA_MAX_XFER, true, true> uop_queue_;
1192
  // instruction queue
1193
  InsnQueue<VTA_MAX_XFER, true, true> insn_queue_;
1194 1195
  // Device handle
  VTADeviceHandle device_{nullptr};
1196 1197 1198 1199
};

}  // namespace vta

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
void* VTABufferAlloc(size_t size) {
  return vta::DataBuffer::Alloc(size);
}

void VTABufferFree(void* buffer) {
  vta::DataBuffer::Free(vta::DataBuffer::FromHandle(buffer));
}

void VTABufferCopy(const void* from,
                   size_t from_offset,
                   void* to,
                   size_t to_offset,
                   size_t size,
                   int kind_mask) {
  vta::DataBuffer* from_buffer = nullptr;
  vta::DataBuffer* to_buffer = nullptr;

  if (kind_mask & 2) {
    from_buffer = vta::DataBuffer::FromHandle(from);
    from = from_buffer->virt_addr();
  }
  if (kind_mask & 1) {
    to_buffer = vta::DataBuffer::FromHandle(to);
    to = to_buffer->virt_addr();
  }
  if (from_buffer) {
    from_buffer->InvalidateCache(from_offset, size);
  }

  memcpy(static_cast<char*>(to) + to_offset,
         static_cast<const char*>(from) + from_offset,
         size);
  if (to_buffer) {
    to_buffer->FlushCache(to_offset, size);
  }
}
1236 1237 1238 1239 1240 1241 1242 1243 1244

VTACommandHandle VTATLSCommandHandle() {
  return vta::CommandQueue::ThreadLocal().get();
}

void VTARuntimeShutdown() {
  vta::CommandQueue::Shutdown();
}

1245 1246 1247
void VTASetDebugMode(VTACommandHandle cmd, int debug_flag) {
  static_cast<vta::CommandQueue*>(cmd)->
      SetDebugFlag(debug_flag);
1248 1249 1250 1251 1252 1253 1254
}

void* VTABufferCPUPtr(VTACommandHandle cmd, void* buffer) {
  return vta::DataBuffer::FromHandle(buffer)->virt_addr();
}

void VTAWriteBarrier(VTACommandHandle cmd,
1255 1256 1257 1258
                     void* buffer,
                     uint32_t elem_bits,
                     uint32_t start,
                     uint32_t extent) {
1259 1260 1261 1262 1263
  static_cast<vta::CommandQueue*>(cmd)->
      WriteBarrier(buffer, elem_bits, start, extent);
}

void VTAReadBarrier(VTACommandHandle cmd,
1264 1265 1266 1267
                    void* buffer,
                    uint32_t elem_bits,
                    uint32_t start,
                    uint32_t extent) {
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
  static_cast<vta::CommandQueue*>(cmd)->
      ReadBarrier(buffer, elem_bits, start, extent);
}

void VTALoadBuffer2D(VTACommandHandle cmd,
                     void* src_dram_addr,
                     uint32_t src_elem_offset,
                     uint32_t x_size,
                     uint32_t y_size,
                     uint32_t x_stride,
                     uint32_t x_pad_before,
                     uint32_t y_pad_before,
                     uint32_t x_pad_after,
                     uint32_t y_pad_after,
                     uint32_t dst_sram_index,
                     uint32_t dst_memory_type) {
  static_cast<vta::CommandQueue*>(cmd)->
      LoadBuffer2D(src_dram_addr, src_elem_offset,
                   x_size, y_size, x_stride,
                   x_pad_before, y_pad_before,
                   x_pad_after, y_pad_after,
                   dst_sram_index, dst_memory_type);
}

void VTAStoreBuffer2D(VTACommandHandle cmd,
                      uint32_t src_sram_index,
                      uint32_t src_memory_type,
                      void* dst_dram_addr,
                      uint32_t dst_elem_offset,
                      uint32_t x_size,
                      uint32_t y_size,
                      uint32_t x_stride) {
1300 1301 1302 1303
  static_cast<vta::CommandQueue*>(cmd)->
      StoreBuffer2D(src_sram_index, src_memory_type,
                    dst_dram_addr, dst_elem_offset,
                    x_size, y_size, x_stride);
1304 1305 1306 1307 1308 1309 1310 1311 1312
}

void VTAUopPush(uint32_t mode,
                uint32_t reset_out,
                uint32_t dst_index,
                uint32_t src_index,
                uint32_t wgt_index,
                uint32_t opcode,
                uint32_t use_imm,
1313
                int32_t imm_val) {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
  vta::CommandQueue::ThreadLocal()->record_kernel()
      ->Push(mode, reset_out, dst_index, src_index,
             wgt_index, opcode, use_imm, imm_val);
}

void VTAUopLoopBegin(uint32_t extent,
                     uint32_t dst_factor,
                     uint32_t src_factor,
                     uint32_t wgt_factor) {
  vta::CommandQueue::ThreadLocal()->record_kernel()
      ->PushLoopBegin(extent, dst_factor, src_factor, wgt_factor);
}

void VTAUopLoopEnd() {
  vta::CommandQueue::ThreadLocal()->record_kernel()
      ->PushLoopEnd();
}

int VTAPushGEMMOp(void** uop_handle,
                  int (*finit)(void*),
                  void* signature,
                  int nbytes) {
  vta::CommandQueue::ThreadLocal()->
      PushGEMMOp(uop_handle, finit, signature, nbytes);
  return 0;
}

int VTAPushALUOp(void** uop_handle,
                 int (*finit)(void*),
                 void* signature,
                 int nbytes) {
  vta::CommandQueue::ThreadLocal()->
      PushALUUop(uop_handle, finit, signature, nbytes);
  return 0;
}

int VTADepPush(VTACommandHandle cmd, int from_qid, int to_qid) {
  static_cast<vta::CommandQueue*>(cmd)->
      DepPush(from_qid, to_qid);
  return 0;
}

int VTADepPop(VTACommandHandle cmd, int from_qid, int to_qid) {
  static_cast<vta::CommandQueue*>(cmd)->
      DepPop(from_qid, to_qid);
  return 0;
}

void VTASynchronize(VTACommandHandle cmd, uint32_t wait_cycles) {
  static_cast<vta::CommandQueue*>(cmd)->
      Synchronize(wait_cycles);
}