test_topi_pooling.py 7.56 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20
"""Test code for pooling"""
import numpy as np
import tvm
import topi
21
import math
22 23
from topi.util import get_const_tuple

24 25
from common import get_all_backend

26
def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_pad=True):
Yuwei HU committed
27 28 29
    iw = ih
    kw = kh
    sw = sh
30
    pt, pl, pb, pr = padding
31
    layout = "NCHW"
Yuwei HU committed
32
    A = tvm.placeholder((n, ic, ih, iw), name='A')
33
    B = topi.nn.pool(A, kernel=[kh, kw], stride=[sh, sw], padding=padding,
34 35
                     pool_type=pool_type, ceil_mode=ceil_mode,
                     layout="NCHW", count_include_pad=count_include_pad)
Yuwei HU committed
36 37 38
    B = topi.nn.relu(B)
    dtype = A.dtype

39 40 41
    bshape = get_const_tuple(B.shape)
    ashape = get_const_tuple(A.shape)
    if ceil_mode:
42 43
        assert bshape[2] == int(math.ceil(float(ashape[2] - kh + pt + pb) / sh) + 1)
        assert bshape[3] == int(math.ceil(float(ashape[3] - kw + pl + pr) / sw) + 1)
44
    else:
45 46
        assert bshape[2] == int(math.floor(float(ashape[2] - kh + pt + pb) / sh) + 1)
        assert bshape[3] == int(math.floor(float(ashape[3] - kw + pl + pr) / sw) + 1)
47

48
    a_np = np.random.uniform(low=0.001, size=(n, ic, ih, iw)).astype(dtype)
49 50
    pad_np = np.zeros(shape=(n, ic, ih+pt+pb, iw+pl+pr)).astype(dtype)
    no_zero = (range(n), range(ic), (range(pt, ih+pt)), (range(pl, iw+pl)))
Yuwei HU committed
51 52 53 54 55 56 57
    pad_np[np.ix_(*no_zero)] = a_np
    _, oc, oh, ow = get_const_tuple(B.shape)
    b_np = np.zeros(shape=(n, oc, oh, ow)).astype(dtype)

    if pool_type == 'avg':
        for i in range(oh):
            for j in range(ow):
58 59 60 61 62 63
                if count_include_pad:
                    b_np[:,:,i,j] = np.mean(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw], axis=(2,3))
                else:
                    pad_count = np.sum(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw] > 0, axis=(2,3))
                    b_np[:,:,i,j] = np.sum(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw], axis=(2,3)) / np.maximum(pad_count, 1)

Yuwei HU committed
64 65 66 67 68 69 70
    elif pool_type =='max':
        for i in range(oh):
            for j in range(ow):
                b_np[:,:,i,j] = np.max(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw], axis=(2,3))
    b_np = np.maximum(b_np, 0.0)

    def check_device(device):
71 72
        ctx = tvm.context(device, 0)
        if not ctx.exist:
Yuwei HU committed
73 74
            print("Skip because %s is not enabled" % device)
            return
75
        print("Running on target: %s" % device)
76
        with tvm.target.create(device):
77
            s = topi.generic.schedule_pool(B, layout)
78

Yuwei HU committed
79 80 81 82
        a = tvm.nd.array(a_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B], device)
        f(a, b)
83
        tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)
Yuwei HU committed
84

85
    for device in get_all_backend():
Yuwei HU committed
86 87 88
        check_device(device)

def test_pool():
89 90 91 92 93 94 95 96
    verify_pool(1, 256, 32, 2, 2, [0, 0, 0, 0], 'avg', False, True)
    verify_pool(1, 256, 31, 3, 3, [1, 2, 1, 2], 'avg', False, True)
    verify_pool(1, 256, 32, 2, 2, [1, 2, 1, 2], 'avg', False, False)
    verify_pool(1, 256, 31, 4, 4, [3, 3, 3, 3], 'avg', False, False)
    verify_pool(1, 256, 31, 4, 4, [0, 0, 0, 0], 'avg', False, False)
    verify_pool(1, 256, 32, 2, 2, [0, 0, 0, 0], 'max', False)
    verify_pool(1, 256, 31, 3, 3, [2, 1, 2, 1], 'max', False)
    verify_pool(1, 256, 31, 3, 3, [2, 1, 2, 1], 'max', True)
97

98 99 100 101
    verify_pool(1, 256, 31, 3, 3, [2, 1, 0, 3], 'avg', False, True)
    verify_pool(1, 256, 32, 2, 2, [0, 3, 2, 1], 'avg', False, False)
    verify_pool(1, 256, 31, 3, 3, [1, 0, 3, 2], 'max', False)
    verify_pool(1, 256, 31, 3, 3, [3, 2, 1, 0], 'max', True)
Yuwei HU committed
102 103


104 105 106 107 108 109 110 111 112 113 114 115 116
def verify_global_pool(n, c, h, w, pool_type):
    A = tvm.placeholder((n, c, h, w), name='A')
    B = topi.nn.global_pool(A, pool_type=pool_type)
    B = topi.nn.relu(B)

    a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype)
    if pool_type == 'avg':
        b_np = np.mean(a_np, axis=(2,3), keepdims=True)
    elif pool_type =='max':
        b_np = np.max(a_np, axis=(2,3), keepdims=True)
    b_np = np.maximum(b_np, 0.0)

    def check_device(device):
117 118
        ctx = tvm.context(device, 0)
        if not ctx.exist:
119 120
            print("Skip because %s is not enabled" % device)
            return
121
        print("Running on target: %s" % device)
122
        with tvm.target.create(device):
123
            s = topi.generic.schedule_adaptive_pool(B)
124 125
        a = tvm.nd.array(a_np, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx)
Yuwei HU committed
126
        f = tvm.build(s, [A, B], device)
127
        f(a, b)
128
        tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)
129

130
    for device in get_all_backend():
131 132 133 134 135 136 137 138
        check_device(device)

def test_global_pool():
    verify_global_pool(1, 1024, 7, 7, 'avg')
    verify_global_pool(4, 1024, 7, 7, 'avg')
    verify_global_pool(1, 1024, 7, 7, 'max')
    verify_global_pool(4, 1024, 7, 7, 'max')

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
def verify_adaptive_pool(dshape, out_size, pool_type, layout="NCHW", dtype="float32"):
    def start_index(index, odim, idim):
        return int(np.floor(index * idim / odim))

    def end_index(index, odim, idim):
        return int(np.ceil((index + 1) * idim / odim))

    np_data = np.random.uniform(low=0, high=255, size=dshape).astype(dtype)
    n, c, h, w = dshape
    oh, ow = out_size
    oshape = (n, c) + out_size
    np_out = np.zeros(oshape).astype(dtype)
    np_op = np.mean if pool_type == "avg" else np.max
    for i in range(n):
        for j in range(c):
            for k in range(oh):
                k_start = start_index(k, oh, h)
                k_end = end_index(k, oh, h)
                k_sl = slice(k_start, k_end)
                for l in range(ow):
                    l_start = start_index(l, ow, w)
                    l_end = end_index(l, ow, w)
                    l_sl = slice(l_start, l_end)
                    np_out[i, j, k, l] = np_op(np_data[i, j, k_sl, l_sl])

    data = tvm.placeholder(dshape, name="data", dtype=dtype)
    out = topi.nn.adaptive_pool(data, out_size, pool_type, layout)
    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_adaptive_pool(out)
        a = tvm.nd.array(np_data, ctx)
        b = tvm.nd.array(np.zeros(get_const_tuple(oshape), dtype=out.dtype), ctx)
        f = tvm.build(s, [data, out], device)
        f(a, b)
        tvm.testing.assert_allclose(b.asnumpy(), np_out, rtol=1e-5)

    for device in get_all_backend():
        check_device(device)

def test_adaptive_pool():
    verify_adaptive_pool((1, 3, 224, 224), (1, 1), "max")
    verify_adaptive_pool((1, 3, 224, 224), (1, 1), "avg")
    verify_adaptive_pool((1, 14, 56, 78), (34, 13), "max")
    verify_adaptive_pool((1, 5, 46, 97), (4, 96), "avg")

189 190

if __name__ == "__main__":
Yuwei HU committed
191
    test_pool()
192
    test_global_pool()
193
    test_adaptive_pool()