test_pass_fuse_ops.py 10.5 KB
Newer Older
1 2 3 4 5
import tvm
from tvm import relay

def test_fuse_simple():
    """Simple testcase."""
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    def before():
        x = relay.var("x", shape=(10, 20))
        y = relay.add(x, relay.const(1, "float32"))
        z = relay.exp(y)
        return relay.Function([x], z)

    def expected():
        x = relay.var("p", shape=(10, 20))
        y = relay.add(x, relay.const(1, "float32"))
        z = relay.exp(y)
        f1 = relay.Function([x], z)
        x = relay.var("x", shape=(10, 20))
        y = relay.Call(f1, [x])
        return relay.Function([x], y)

    z = before()
22
    z = relay.ir_pass.infer_type(z)
23 24
    zz = relay.ir_pass.fuse_ops(z, opt_level=2)
    zz = relay.ir_pass.infer_type(zz)
25 26
    zz = relay.ir_pass.fuse_ops(zz)
    zz = relay.ir_pass.infer_type(zz)
27 28 29 30 31 32 33 34
    after = relay.ir_pass.infer_type(expected())
    assert relay.ir_pass.alpha_equal(zz, after)


def test_conv2d_fuse():
    """Test fusion case of conv2d"""
    def before(dshape):
        x = relay.var("x", shape=dshape)
35
        x = relay.add(x, relay.const(1, "float32"))
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        y = relay.nn.conv2d(x, relay.var("w1"),
                            kernel_size=(3, 3),
                            padding=(1, 1),
                            channels=16)
        # this is the next dominator.
        y1 = relay.add(relay.const(1, "float32"), y)
        y = relay.add(y, y1)
        # second path
        z2 = relay.nn.conv2d(y, relay.var("w2"),
                             kernel_size=(1, 1),
                             padding=(0,0),
                             channels=16)
        z3 = relay.nn.conv2d(y, relay.var("w3"),
                             kernel_size=(3, 3),
                             padding=(1,1),
                             channels=16)
        # add can only be fused to z1
        z = relay.add(z2, z3)
        return relay.Function(relay.ir_pass.free_vars(z), z)

    def expected(dshape):
57 58 59 60
        # segment 0
        x = relay.var("p0", shape=dshape)
        y = relay.add(x, relay.const(1, "float32"))
        f0 = relay.Function([x], y)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        # segment 1
        x = relay.var("p0", shape=dshape)
        w = relay.var("p1")
        y = relay.nn.conv2d(x, w,
                            kernel_size=(3, 3),
                            padding=(1, 1),
                            channels=16)
        y1 = relay.add(relay.const(1, "float32"), y)
        y = relay.add(y, y1)
        f1 = relay.Function([x, w], y)
        # segment 2
        x = relay.var("p0", shape=dshape)
        w = relay.var("p1")
        z2 = relay.nn.conv2d(x, w,
                             kernel_size=(3, 3),
                             padding=(1,1),
                             channels=16)
        f2 = relay.Function([x, w], z2)
        # segment 3
        x = relay.var("p0", shape=dshape)
        w = relay.var("p1")
        offset = relay.var("p2", shape=dshape)
        z3 = relay.nn.conv2d(x, w,
                             kernel_size=(1, 1),
                             padding=(0, 0),
                             channels=16)
        z3 = relay.add(z3, offset)
        f3 = relay.Function([x, w, offset], z3)
        # compose
        x = relay.var("x", shape=dshape)
91 92
        y = relay.Call(f0, [x])
        y = relay.Call(f1, [y, relay.var("w1")])
93 94 95 96 97 98 99 100 101 102 103 104 105
        z2 = relay.Call(f2, [y, relay.var("w3")])
        z3 = relay.Call(f3, [y, relay.var("w2"), z2])
        z = z3
        return relay.Function(relay.ir_pass.free_vars(z), z)

    dshape = (1, 16, 64, 64)
    z = before(dshape)
    z = relay.ir_pass.infer_type(z)
    zz = relay.ir_pass.fuse_ops(z, opt_level=2)
    zz = relay.ir_pass.infer_type(zz)
    after = relay.ir_pass.infer_type(expected(dshape))
    assert relay.ir_pass.alpha_equal(zz, after)

106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def test_concatenate():
    """Test fusion case involving concat op and Tuple node"""

    def before(dshape):
        x = relay.var("x", shape=dshape)
        pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
        upsampled = relay.nn.upsampling(pooled, scale=2, layout="NCHW")
        concat = relay.concatenate((upsampled, x), axis=1)
        out = relay.add(concat, relay.const(1, "float32"))
        return relay.Function(relay.ir_pass.free_vars(out), out)

    def expected(dshape):
        x = relay.var("x", shape=dshape)
        pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
        f0 = relay.Function([x], pooled)

        p0 = relay.var("p0", shape=(dshape[0], dshape[1], dshape[2]//2, dshape[3]//2))
        p1 = relay.var("p1", shape=dshape)
        upsampled = relay.nn.upsampling(p0, scale=2, layout="NCHW")
        concat = relay.concatenate((upsampled, p1), axis=1)
        out = relay.add(concat, relay.const(1, "float32"))
        f1 = relay.Function([p0, p1], out)

        x = relay.var("x", shape=dshape)
        y = relay.Call(f0, [x])
        z = relay.Call(f1, [y, x])
        return relay.Function([x], z)

    dshape = (1, 16, 64, 64)
    z = before(dshape)
    z = relay.ir_pass.infer_type(z)
    zz = relay.ir_pass.fuse_ops(z, opt_level=0)
    assert not relay.ir_pass.free_vars(zz)
    zz = relay.ir_pass.fuse_ops(z, opt_level=2)
    zz = relay.ir_pass.infer_type(zz)
    assert not relay.ir_pass.free_vars(zz)
    after = relay.ir_pass.infer_type(expected(dshape))
    assert relay.ir_pass.alpha_equal(zz, after)


def test_tuple_root():
    """Test fusion case where Tuple node is the root in its group"""

    def before(dshape):
        x = relay.var("x", shape=dshape)
        pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
        upsampled = relay.nn.upsampling(pooled, scale=2, layout="NCHW")
        out = relay.Tuple((upsampled, x))
        return relay.Function(relay.ir_pass.free_vars(out), out)

    def expected(dshape):
        x = relay.var("x", shape=dshape)
        pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
        f0 = relay.Function([x], pooled)

        p0 = relay.var("p0", shape=(dshape[0], dshape[1], dshape[2]//2, dshape[3]//2))
        p1 = relay.var("p1", shape=(dshape[0], dshape[1], dshape[2], dshape[3]))
164
        p1_copy = relay.copy(p1)
165
        upsampled = relay.nn.upsampling(p0, scale=2, layout="NCHW")
166
        out = relay.Tuple((upsampled, p1_copy))
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        f1 = relay.Function([p0, p1], out)

        x = relay.var("x", shape=dshape)
        y = relay.Call(f0, [x])
        z = relay.Call(f1, [y, x])
        return relay.Function([x], z)

    dshape = (1, 16, 64, 64)
    z = before(dshape)
    z = relay.ir_pass.infer_type(z)
    zz = relay.ir_pass.fuse_ops(z, opt_level=0)
    assert not relay.ir_pass.free_vars(zz)
    zz = relay.ir_pass.fuse_ops(z, opt_level=2)
    zz = relay.ir_pass.infer_type(zz)
    assert not relay.ir_pass.free_vars(zz)
    after = relay.ir_pass.infer_type(expected(dshape))
    assert relay.ir_pass.alpha_equal(zz, after)

185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
def test_tuple_strided_slice():
    """
    Test fusion case where the number of fields of tuple and
    the number of parameters to the function containing the tuple are different
    """

    def before(dshape):
        x = relay.var("x", shape=dshape)
        slice1 = relay.strided_slice(x, begin=[0, 0], end=[dshape[1]//2, dshape[1]], strides=[1,1])
        slice2 = relay.strided_slice(x, begin=[dshape[1]//2, 0], end=[dshape[0], dshape[1]], strides=[1,1])
        out = relay.Tuple((slice1, slice2))
        return relay.Function([x], out)

    def expected(dshape):
        x = relay.var("x", shape=dshape)
        slice1 = relay.strided_slice(x, begin=[0, 0], end=[dshape[1]//2, dshape[1]], strides=[1,1])
        slice2 = relay.strided_slice(x, begin=[dshape[1]//2, 0], end=[dshape[0], dshape[1]], strides=[1,1])
        out = relay.Tuple((slice1, slice2))
        f0 = relay.Function([x], out)

        x = relay.var("x", shape=dshape)
        y = relay.Call(f0, [x])
        return relay.Function([x], y)

    dshape = (64, 64)
    z = before(dshape)
    z = relay.ir_pass.infer_type(z)
    zz = relay.ir_pass.fuse_ops(z, opt_level=0)
    assert not relay.ir_pass.free_vars(zz)
    zz = relay.ir_pass.fuse_ops(z, opt_level=2)
    zz = relay.ir_pass.infer_type(zz)
    assert not relay.ir_pass.free_vars(zz)
    after = relay.ir_pass.infer_type(expected(dshape))
    assert relay.ir_pass.alpha_equal(zz, after)
    print(zz.astext())


223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
def test_stop_fusion():
    def before(dshape):
        x = relay.var("x", shape=dshape)
        y = relay.add(x, relay.const(1, "float32"))
        y = relay.annotation.stop_fusion(y)
        z = relay.exp(y)
        return relay.Function([x], z)

    def expected(dshape):
        x = relay.var("p0", shape=dshape)
        y = relay.add(x, relay.const(1, "float32"))
        f1 = relay.Function([x], y)

        x = relay.var("p01", shape=dshape)
        y = relay.exp(x)
        f2 = relay.Function([x], y)

        x = relay.var("x", shape=dshape)
        y = relay.Call(f1, [x])
        z = relay.Call(f2, [y])
        return relay.Function([x], z)

    dshape = (10, 20)
    z = before(dshape)
    z = relay.ir_pass.infer_type(z)
    z = relay.ir_pass.fuse_ops(z)
    z = relay.ir_pass.infer_type(z)
    after = relay.ir_pass.infer_type(expected(dshape))
    assert relay.ir_pass.alpha_equal(z, after)


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def test_fuse_myia_regression():
    def before(dshape, dtype):
        x = relay.var('x', shape=dshape, dtype=dtype)
        y = relay.var('y', shape=dshape, dtype=dtype)
        sb = relay.ScopeBuilder()
        with sb.if_scope(relay.op.greater(x, y)):
            sb.ret(relay.Function([], x))
        with sb.else_scope():
            sb.ret(relay.Function([], y))
        return relay.Function([x, y],
            relay.Call(sb.get(), []))

    def expected(dshape, dtype):
        x = relay.var('x', shape=dshape, dtype=dtype)
        y = relay.var('y', shape=dshape, dtype=dtype)
        sb = relay.ScopeBuilder()
        p1 = relay.var('p1', shape=dshape, dtype=dtype)
        p2 = relay.var('p2', shape=dshape, dtype=dtype)
        fused_gt = relay.Function([p1, p2],
            relay.op.greater(p1, p2))
        with sb.if_scope(fused_gt(x, y)):
            sb.ret(relay.Function([], x))
        with sb.else_scope():
            sb.ret(relay.Function([], y))
        return relay.Function([x, y],
            relay.Call(sb.get(), []))

    dshape = ()
    dtype = 'int64'
    f = before(dshape, dtype)
    f = relay.ir_pass.infer_type(f)
    f = relay.ir_pass.fuse_ops(f)
    after = relay.ir_pass.infer_type(expected(dshape, dtype))
    assert relay.ir_pass.alpha_equal(f, after)


290 291
if __name__ == "__main__":
    test_fuse_simple()
292
    test_conv2d_fuse()
293 294
    test_concatenate()
    test_tuple_root()
295
    test_tuple_strided_slice()
296
    test_stop_fusion()
297
    test_fuse_myia_regression()