test_pass_combine_parallel_conv2d.py 5.75 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
from tvm import relay
import numpy as np


def test_combine_parallel_conv2d():
    """Simple testcase."""
    def before(x, w1, w2, w3, w4):
        args = [x, w1, w2, w3, w4]
        y1 = relay.nn.conv2d(x, w1)
        y2 = relay.nn.conv2d(x, w2)
        # y3 cannot be combined
        y3 = relay.nn.conv2d(x, w3)
        y4 = relay.nn.conv2d(x, w4)
14 15
        y5 = relay.nn.max_pool2d(x)
        y = relay.Tuple((y1, y2, y3, y4, y5))
16 17 18 19 20 21 22 23 24 25 26 27
        return relay.Function(args, y)

    def expected(x, w1, w2, w3, w4, channels1, channels2, channels3, channels4):
        # use a fixed order of args so alpha equal check can pass
        args = [x, w1, w2, w3, w4]
        w = relay.concatenate((w1, w2, w4), axis=0)
        y = relay.nn.conv2d(x, w, channels=channels1 + channels2 + channels4)
        y1 = relay.strided_slice(y, [0, 0], [None, channels1])
        y2 = relay.strided_slice(y, [0, channels1], [None, channels1 + channels2])
        y3 = relay.nn.conv2d(x, w3)
        y4 = relay.strided_slice(y, [0, channels1 + channels2],
                                 [None, channels1 + channels2 + channels4])
28 29
        y5 = relay.nn.max_pool2d(x)
        y = relay.Tuple((y1, y2, y3, y4, y5))
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        return relay.Function(args, y)

    def check(x_shape, channels1, channels2, channels3, channels4):
        x =  relay.var("x", shape=x_shape)
        in_c = x_shape[1]
        w1 = relay.var("w1", shape=(channels1, in_c, 1, 1))
        w2 = relay.var("w2", shape=(channels2, in_c, 1, 1))
        w3 = relay.var("w3", shape=(channels3, in_c, 3, 3))
        w4 = relay.var("w4", shape=(channels4, in_c, 1, 1))

        y_before = before(x, w1, w2, w3, w4)
        y = relay.ir_pass.infer_type(y_before)
        y = relay.ir_pass.combine_parallel_conv2d(y)
        y = relay.ir_pass.infer_type(y)
        y_expected = expected(x, w1, w2, w3, w4, channels1, channels2, channels3, channels4)
        y_expected = relay.ir_pass.infer_type(y_expected)
        assert relay.ir_pass.alpha_equal(y, y_expected)

    check((1, 4, 16, 16), 4, 4, 4, 4)
    check((1, 4, 16, 16), 4, 8, 4, 7)


def test_combine_parallel_conv2d_scale_relu():
    """Testcase of combining conv2d + scale + relu"""
    def before(x, w1, w2, scale1, scale2, bias):
        args = [x, w1, w2, scale1, scale2, bias]
        y1 = relay.nn.conv2d(x, w1)
        y1 = relay.multiply(y1, scale1)
        y1 = relay.nn.relu(y1)
        y2 = relay.nn.conv2d(x, w2)
        y2 = relay.multiply(y2, scale2)
        y2 = relay.nn.relu(y2)
        y2 = relay.add(y2, bias)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def expected(x, w1, w2, scale1, scale2, bias, channels1, channels2):
        args = [x, w1, w2, scale1, scale2, bias]
        w = relay.concatenate((w1, w2), axis=0)
        scale = relay.concatenate((scale1, scale2), axis=0)
        y = relay.nn.conv2d(x, w, channels=channels1 + channels2)
        y = relay.multiply(y, scale)
        y = relay.nn.relu(y)
        y1 = relay.strided_slice(y, [0, 0], [None, channels1])
        y2 = relay.strided_slice(y, [0, channels1], [None, channels1 + channels2])
        y2 = relay.add(y2, bias)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def check(x_shape, channels1, channels2):
        x = relay.var("x", shape=x_shape)
        in_c = x_shape[1]
        w1 = relay.var("w1", shape=(channels1, in_c, 1, 1))
        w2 = relay.var("w2", shape=(channels2, in_c, 1, 1))
        scale1 = relay.var("scale1", shape=(channels1, 1, 1))
        scale2 = relay.var("scale2", shape=(channels2, 1, 1))
        bias = relay.var("bias", shape=(channels2, 1, 1))
        y_before = before(x, w1, w2, scale1, scale2, bias)
        y = relay.ir_pass.infer_type(y_before)
        y = relay.ir_pass.combine_parallel_conv2d(y)
        y = relay.ir_pass.infer_type(y)
        y_expected = expected(x, w1, w2, scale1, scale2, bias, channels1, channels2)
        y_expected = relay.ir_pass.infer_type(y_expected)
        assert relay.ir_pass.alpha_equal(y, y_expected)

    check((1, 4, 16, 16), 4, 8)


def test_combine_parallel_conv2d_scale():
    """Testcase of un-combinable scale"""
    def before(x, w1, w2, scale1, scale2):
        args = [x, w1, w2, scale1, scale2]
        y1 = relay.nn.conv2d(x, w1)
        y1 = relay.multiply(y1, scale1)
        y2 = relay.nn.conv2d(x, w2)
        y2 = relay.multiply(y2, scale2)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def expected(x, w1, w2, scale1, scale2, channels1, channels2):
        args = [x, w1, w2, scale1, scale2]
        w = relay.concatenate((w1, w2), axis=0)
        y = relay.nn.conv2d(x, w, channels=channels1 + channels2)
        y1 = relay.strided_slice(y, [0, 0], [None, channels1])
        y2 = relay.strided_slice(y, [0, channels1], [None, channels1 + channels2])
        y1 = relay.multiply(y1, scale1)
        y2 = relay.multiply(y2, scale2)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def check(x_shape, channels1, channels2):
        x = relay.var("x", shape=x_shape)
        in_c = x_shape[1]
        w1 = relay.var("w1", shape=(channels1, in_c, 1, 1))
        w2 = relay.var("w2", shape=(channels2, in_c, 1, 1))
        scale1 = relay.var("scale1", shape=(1,))
        scale2 = relay.var("scale2", shape=(1,))
        y_before = before(x, w1, w2, scale1, scale2)
        y = relay.ir_pass.infer_type(y_before)
        y = relay.ir_pass.combine_parallel_conv2d(y)
        y = relay.ir_pass.infer_type(y)
        y_expected = expected(x, w1, w2, scale1, scale2, channels1, channels2)
        y_expected = relay.ir_pass.infer_type(y_expected)
        assert relay.ir_pass.alpha_equal(y, y_expected)

    check((1, 4, 16, 16), 4, 8)

if __name__ == "__main__":
    test_combine_parallel_conv2d()
    test_combine_parallel_conv2d_scale_relu()
    test_combine_parallel_conv2d_scale()