test_schedule_tensorize.py 13 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
import tvm

def intrin_vadd(n):
    x = tvm.placeholder((n,), name='vx')
    y = tvm.placeholder((n,), name='vy')
    z = tvm.compute(x.shape, lambda i: x[i] + y[i], name='z')
    def intrin_func(ins, outs):
        xx, yy = ins
        zz = outs[0]
        return tvm.call_packed("vadd", xx, yy, zz)
    with tvm.build_config(offset_factor=16):
        return tvm.decl_tensor_intrin(z.op, intrin_func)

def intrin_gemv(m, n):
    w = tvm.placeholder((m, n), name='w')
    x = tvm.placeholder((n,), name='x')
    k = tvm.reduce_axis((0, n), name='k')
    z = tvm.compute((m,), lambda i:
                    tvm.sum(w[i, k] * x[k], axis=k), name='z')
36 37 38
    Wb = tvm.decl_buffer(w.shape, w.dtype,
                         name="W",
                         offset_factor=16,
39 40 41 42
                         strides=[tvm.var('ldw'), 1])
    def intrin_func(ins, outs):
        ww, xx = ins
        zz = outs[0]
43 44 45
        ww_ptr = ww.access_ptr("r")
        xx_ptr = xx.access_ptr("r")
        zz_ptr = zz.access_ptr("w")
46
        body = tvm.call_packed(
47
            "gemv", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
48
        reset = tvm.call_packed(
49
            "fill_zero", zz_ptr, n)
50
        update = tvm.call_packed(
51
            "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
52 53
        return body, reset, update

54 55
    with tvm.build_config(data_alignment=16,
                          offset_factor=16):
56 57 58
        return tvm.decl_tensor_intrin(z.op, intrin_func,
                                      binds={w: Wb})

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def intrin_gemv_no_reset(m, n):
    w = tvm.placeholder((m, n), name='w')
    x = tvm.placeholder((n,), name='x')
    k = tvm.reduce_axis((0, n), name='k')
    z = tvm.compute((m,), lambda i:
                    tvm.sum(w[i, k] * x[k], axis=k), name='z')
    Wb = tvm.decl_buffer(w.shape, w.dtype,
                         name="W",
                         offset_factor=16,
                         strides=[tvm.var('ldw'), 1])
    def intrin_func(ins, outs):
        ww, xx = ins
        zz = outs[0]
        ww_ptr = ww.access_ptr("r")
        xx_ptr = xx.access_ptr("r")
        zz_ptr = zz.access_ptr("w")
        body = tvm.call_packed(
            "gemv", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
        update = tvm.call_packed(
            "gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0])
        return body, None, update

    with tvm.build_config(data_alignment=16,
                          offset_factor=16):
        return tvm.decl_tensor_intrin(z.op, intrin_func,
                                      binds={w: Wb})

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

def test_tensorize_vadd():
    m = 128
    x = tvm.placeholder((m,), name='x')
    y = tvm.placeholder((m,), name='y')
    z = tvm.compute(x.shape, lambda i: x[i] + y[i], name='z')

    def check(factor):
        s = tvm.create_schedule(z.op)
        xo, xi = s[z].split(z.op.axis[0], factor=factor)
        vadd = intrin_vadd(factor)
        s[z].tensorize(xi, vadd)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[z], dom_map)
        assert tvm.ir_pass.Equal(out_dom[z.op.axis[0]].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[z.op.axis[0]].min, xo * factor)
        assert tvm.ir_pass.Equal(in_dom.items()[0][1][0].extent, factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[z], out_dom, in_dom, vadd)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(vadd.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [x, y, z])

    check(16)


def test_tensorize_matmul():
    n = 1024
    m = n
    l = n
    A = tvm.placeholder((n, l), name='A')
    B = tvm.placeholder((m, l), name='B')
    k = tvm.reduce_axis((0, l), name='k')
    C = tvm.compute((n, m), lambda i, j:
                    tvm.sum(B[j, k] * A[i, k], axis=k), name='C')

    def check(factor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        yo, yi = s[C].split(y, factor=factor)
        gemv = intrin_gemv(factor, l)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def check_rfactor(factor, rfactor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        rk = C.op.reduce_axis[0]
        yo, yi = s[C].split(y, factor=factor)
        ro, ri = s[C].split(rk, factor=rfactor)
        s[C].reorder(yo, ro, yi, ri)
        gemv = intrin_gemv(factor, rfactor)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    def check_rfactor_no_reset(factor, rfactor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        rk = C.op.reduce_axis[0]
        yo, yi = s[C].split(y, factor=factor)
        ro, ri = s[C].split(rk, factor=rfactor)
        s[C].reorder(yo, ro, yi, ri)
        gemv = intrin_gemv_no_reset(factor, rfactor)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

    def check_rfactor_no_reset_multi_reduction(factor, rfactor):
        s = tvm.create_schedule(C.op)
        x, y = C.op.axis
        rk = C.op.reduce_axis[0]
        yo, yi = s[C].split(y, factor=factor)
        ro, ri = s[C].split(rk, factor=rfactor)
        roo, roi = s[C].split(ro, factor=2)
        s[C].reorder(yo, roo, roi, yi, ri)
        gemv = intrin_gemv_no_reset(factor, rfactor)
        s[C].tensorize(yi, gemv)
        s = s.normalize()
        dom_map = tvm.schedule.InferBound(s)
        finfer = tvm.get_global_func("test.op.InferTensorizeRegion")
        out_dom, in_dom = finfer(s[C], dom_map)
        assert tvm.ir_pass.Equal(out_dom[x].extent, 1)
        assert tvm.ir_pass.Equal(out_dom[y].extent, factor)
        assert tvm.ir_pass.Equal(out_dom[y].min, yo * factor)
        fmatch = tvm.get_global_func("test.op.MatchTensorizeBody")
        body = fmatch(s[C], out_dom, in_dom, gemv)
        assert tvm.ir_pass.Equal(tvm.ir_pass.CanonicalSimplify(body[0]),
                                 tvm.ir_pass.CanonicalSimplify(gemv.op.body[0]))
        stmt = tvm.schedule.ScheduleOps(s, dom_map)
        tvm.lower(s, [A, B, C])

216 217
    check(16)
    check_rfactor(16, 16)
218 219
    check_rfactor_no_reset(16, 16)
    check_rfactor_no_reset_multi_reduction(16, 16)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
# This tests whether algorithm and intrinsics expressions are simplified
# as much as possible first and then checked for equality. See Issue #696
def test_tensorize_op():
    def op_intrin():
        bh = 9
        bw = 9
        x = tvm.placeholder((5, 5), name='A')
        y = tvm.compute((bh, bw), lambda i,j: x[j/3 + i%3, j%3+ i/3])

        def intrin_func(ins, outs):
            xx, = ins
            zz = outs[0]
            return tvm.call_packed("op", xx, zz)

        with tvm.build_config(offset_factor=2):
            return tvm.decl_tensor_intrin(y.op, intrin_func)

    A = tvm.placeholder((5, 5), name='A')
    B = tvm.compute((9,9), lambda i, j: A[j/3 + i%3, j%3 + i/3])
    bt = op_intrin()
    s = tvm.create_schedule(B.op)

    x,y = B.op.axis
    s[B].tensorize(x, bt)
    s = s.normalize()
    tvm.lower(s, [A, B])
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
# This test asserts that tensorize does not have any effect on
# TensorComputeOp operations
def test_tensorize_tensor_compute_op():
    # an intrinsic called "multivadd" whose definition (pattern)
    # is a loop of another intrinsic called "vadd"
    def intrin_multivadd(n):
        n_a = tvm.var("n_a")
        Ab = tvm.decl_buffer((n, ), tvm.float32, strides=[n_a])

        n_b = tvm.var("n_b")
        Bb = tvm.decl_buffer((n, ), tvm.float32, strides=[n_b])

        n_c = tvm.var("n_c")
        Cb = tvm.decl_buffer((n, ), tvm.float32, strides=[n_c])

        z = tvm.compute((n,), lambda i: tvm.call_extern("float32", 'vadd',
                                                        Ab.access_ptr("w", offset=n_a*i),
                                                        Bb.access_ptr("r", offset=n_b*i),
                                                        Cb.access_ptr("r", offset=n_c*i)))

        # replace the pattern with the multivadd call. I need to figure out
        # how to pass it the right parameters.
        def intrin_func(ins, outs):
            return tvm.call_packed("multivadd")

        with tvm.build_config():
            return tvm.decl_tensor_intrin(z.op, intrin_func, name="multivadd")

    def intrin_vadd(n):
        dtype = 'float32'
        x = tvm.placeholder((n,), dtype=dtype, name='vx')
        y = tvm.placeholder((n,), dtype=dtype, name='vy')
        z = tvm.compute(x.shape, lambda i: x[i] + y[i], name='z')
        s = tvm.create_schedule(z.op)

        def create_buffer(t):
            return tvm.decl_buffer(t.shape, t.dtype,
                                   name='W'+t.name,
                                   offset_factor=16)

        def intrin_func(ins, outs):
            ib = tvm.ir_builder.create()
            ib.emit(tvm.call_extern("float32", 'vadd',
                                    ins[0].access_ptr("r"), ins[1].access_ptr('r'),
                                    outs[0].access_ptr('wr')))
            return ib.get()

        with tvm.build_config(offset_factor=16):
            return tvm.decl_tensor_intrin(z.op, intrin_func, binds={x: create_buffer(x),
                                                                    y: create_buffer(y),
                                                                    z: create_buffer(z)})

    # cache_read, cache_write
    M = 1024
    factor = 16
    dtype = 'float32'

    A = tvm.placeholder((M//factor, factor), name="A", dtype=dtype)
    B = tvm.placeholder((M//factor, factor), name="B", dtype=dtype)

    vadd = intrin_vadd(factor)
    C = tvm.compute((M//factor, factor),
                    lambda i: vadd(A[i, 0:factor], B[i, 0:factor]), name='C')

    s = tvm.create_schedule(C.op)
    multivadd = intrin_multivadd(64)
    s[C].tensorize(C.op.axis[0], multivadd)
    s = s.normalize()
    dom_map = tvm.schedule.InferBound(s)
    stmt = tvm.schedule.ScheduleOps(s, dom_map)
    # The loop that we tried to tensorize still exists in the code
    # That means tensorize didn't work as expected
    assert isinstance(stmt.body.body.body, tvm.stmt.For)
    assert stmt.body.body.body.loop_var.name == C.op.axis[0].var.name



325 326 327
if __name__ == "__main__":
    test_tensorize_vadd()
    test_tensorize_matmul()
328
    test_tensorize_op()
329
    test_tensorize_tensor_compute_op()