tune_relay_arm.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18
"""
Auto-tuning a convolutional network for ARM CPU
19
===============================================
20 21 22 23 24 25 26 27 28 29
**Author**: `Lianmin Zheng <https://github.com/merrymercy>`_, `Zhao Wu <https://github.com/FrozenGene>`_, `Eddie Yan <https://github.com/eqy>`_

Auto-tuning for a specific ARM device is critical for getting the best
performance. This is a tutorial about how to tune a whole convolutional
network.

The operator implementation for ARM CPU in TVM is written in template form.
The template has many tunable knobs (tile factor, vectorization, unrolling, etc).
We will tune all convolution and depthwise convolution operators
in the neural network. After tuning, we produce a log file which stores
30
the best knob values for all required operators. When the TVM compiler compiles
31 32 33
these operators, it will query this log file to get the best knob values.

We also released pre-tuned parameters for some arm devices. You can go to
34
`ARM CPU Benchmark <https://github.com/apache/incubator-tvm/wiki/Benchmark#arm-cpu>`_
35 36 37 38 39 40 41 42 43 44 45 46 47
to see the results.
"""

######################################################################
# Install dependencies
# --------------------
# To use the autotvm package in tvm, we need to install some extra dependencies.
# (change "3" to "2" if you use python2):
#
# .. code-block:: bash
#
#   pip3 install --user psutil xgboost tornado
#
48 49
# To make TVM run faster during tuning, it is recommended to use cython
# as FFI of TVM. In the root directory of TVM, execute
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
# (change "3" to "2" if you use python2):
#
# .. code-block:: bash
#
#   pip3 install --user cython
#   sudo make cython3
#
# Now return to python code. Import packages.

import os

import numpy as np
import tvm
from tvm import autotvm
from tvm import relay
import tvm.relay.testing
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner
from tvm.contrib.util import tempdir
import tvm.contrib.graph_runtime as runtime

#################################################################
# Define network
# --------------
# First we need to define the network in relay frontend API.
# We can load some pre-defined network from :code:`relay.testing`.
# We can also load models from MXNet, ONNX and TensorFlow.

def get_network(name, batch_size):
    """Get the symbol definition and random weight of a network"""
    input_shape = (batch_size, 3, 224, 224)
    output_shape = (batch_size, 1000)

    if "resnet" in name:
        n_layer = int(name.split('-')[1])
84
        mod, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
85 86
    elif "vgg" in name:
        n_layer = int(name.split('-')[1])
87
        mod, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
88
    elif name == 'mobilenet':
89
        mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size)
90
    elif name == 'squeezenet_v1.1':
91
        mod, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
92 93
    elif name == 'inception_v3':
        input_shape = (1, 3, 299, 299)
94
        mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
95 96 97 98
    elif name == 'mxnet':
        # an example for mxnet model
        from mxnet.gluon.model_zoo.vision import get_model
        block = get_model('resnet18_v1', pretrained=True)
99
        mod, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype)
100
        net = mod["main"]
101
        net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
102
        mod = relay.Module.from_expr(net)
103 104 105
    else:
        raise ValueError("Unsupported network: " + name)

106
    return mod, params, input_shape, output_shape
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138


#################################################################
# Start RPC Tracker
# -----------------
# TVM uses RPC session to communicate with ARM boards.
# During tuning, the tuner will send the generated code to the board and
# measure the speed of code on the board.
#
# To scale up the tuning, TVM uses RPC Tracker to manage distributed devices.
# The RPC Tracker is a centralized master node. We can register all devices to
# the tracker. For example, if we have 10 phones, we can register all of them
# to the tracker, and run 10 measurements in parallel, accelerating the tuning process.
#
# To start an RPC tracker, run this command on the host machine. The tracker is
# required during the whole tuning process, so we need to open a new terminal for
# this command:
#
# .. code-block:: bash
#
#   python -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190
#
# The expected output is
#
# .. code-block:: bash
#
#   INFO:RPCTracker:bind to 0.0.0.0:9190

#################################################################
# Register devices to RPC Tracker
# -----------------------------------
# Now we can register our devices to the tracker. The first step is to
139
# build the TVM runtime for the ARM devices.
140 141 142
#
# * For Linux:
#   Follow this section :ref:`build-tvm-runtime-on-device` to build
143
#   the TVM runtime on the device. Then register the device to tracker by
144 145 146 147 148 149 150 151
#
#   .. code-block:: bash
#
#     python -m tvm.exec.rpc_server --tracker=[HOST_IP]:9190 --key=rk3399
#
#   (replace :code:`[HOST_IP]` with the IP address of your host machine)
#
# * For Android:
152
#   Follow this `readme page <https://github.com/apache/incubator-tvm/tree/master/apps/android_rpc>`_ to
153
#   install the TVM RPC APK on the android device. Make sure you can pass the android rpc test.
154
#   Then you have already registered your device. During tuning, you have to go to developer option
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#   and enable "Keep screen awake during changing" and charge your phone to make it stable.
#
# After registering devices, we can confirm it by querying rpc_tracker
#
# .. code-block:: bash
#
#   python -m tvm.exec.query_rpc_tracker --host=0.0.0.0 --port=9190
#
# For example, if we have 2 Huawei mate10 pro, 11 Raspberry Pi 3B and 2 rk3399,
# the output can be
#
# .. code-block:: bash
#
#    Queue Status
#    ----------------------------------
#    key          total  free  pending
#    ----------------------------------
#    mate10pro    2      2     0
#    rk3399       2      2     0
#    rpi3b        11     11    0
#    ----------------------------------
#
# You can register multiple devices to the tracker to accelerate the measurement in tuning.

###########################################
# Set Tuning Options
# ------------------
# Before tuning, we should apply some configurations. Here I use an RK3399 board
# as example. In your setting, you should modify the target and device_key accordingly.
# set :code:`use_android` to True if you use android phone.

#### DEVICE CONFIG ####

# Replace "aarch64-linux-gnu" with the correct target of your board.
# This target is used for cross compilation. You can query it by :code:`gcc -v` on your device.
target = tvm.target.create('llvm -device=arm_cpu -target=aarch64-linux-gnu')

# Also replace this with the device key in your tracker
device_key = 'rk3399'

# Set this to True if you use android phone
use_android = False

#### TUNING OPTION ####
network = 'resnet-18'
log_file = "%s.%s.log" % (device_key, network)
dtype = 'float32'

tuning_option = {
    'log_filename': log_file,

    'tuner': 'xgb',
207
    'n_trial': 1500,
208 209 210 211 212 213
    'early_stopping': 800,

    'measure_option': autotvm.measure_option(
        builder=autotvm.LocalBuilder(
            build_func='ndk' if use_android else 'default'),
        runner=autotvm.RPCRunner(
Bing Xu committed
214
            device_key, host='0.0.0.0', port=9190,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            number=5,
            timeout=10,
        ),
    ),
}

####################################################################
#
# .. note:: How to set tuning options
#
#   In general, the default values provided here work well.
#   If you have enough time budget, you can set :code:`n_trial`, :code:`early_stopping` larger,
#   which makes the tuning run longer.
#   If your device runs very slow or your conv2d operators have many GFLOPs, considering to
#   set timeout larger.
#
#   If your model has depthwise convolution, you could consider setting
#   :code:`try_spatial_pack_depthwise` be :code:`True`, which perform better than default
#   optimization in general. For example, on ARM CPU A53 2.0GHz, we find it could boost 1.6x
#   performance of depthwise convolution on Mobilenet V1 model.

###################################################################
# Begin Tuning
# ------------
# Now we can extract tuning tasks from the network and begin tuning.
# Here, we provide a simple utility function to tune a list of tasks.
# This function is just an initial implementation which tunes them in sequential order.
# We will introduce a more sophisticated tuning scheduler in the future.

# You can skip the implementation of this function for this tutorial.
def tune_tasks(tasks,
               measure_option,
               tuner='xgb',
               n_trial=1000,
               early_stopping=None,
               log_filename='tuning.log',
               use_transfer_learning=True,
               try_winograd=True,
               try_spatial_pack_depthwise=False):
    if try_winograd:
        for i in range(len(tasks)):
            try:  # try winograd template
                tsk = autotvm.task.create(tasks[i].name, tasks[i].args,
                                          tasks[i].target, tasks[i].target_host, 'winograd')
                input_channel = tsk.workload[1][1]
                if input_channel >= 64:
                    tasks[i] = tsk
            except Exception:
                pass

    # if we want to use spatial pack for depthwise convolution
    if try_spatial_pack_depthwise:
        tuner = 'xgb_knob'
        for i in range(len(tasks)):
            if tasks[i].name == 'topi_nn_depthwise_conv2d_nchw':
                tsk = autotvm.task.create(tasks[i].name, tasks[i].args,
                                          tasks[i].target, tasks[i].target_host,
                                          'contrib_spatial_pack')
                tasks[i] = tsk

    # create tmp log file
    tmp_log_file = log_filename + ".tmp"
    if os.path.exists(tmp_log_file):
        os.remove(tmp_log_file)

    for i, tsk in enumerate(reversed(tasks)):
        prefix = "[Task %2d/%2d] " % (i+1, len(tasks))

        # create tuner
        if tuner == 'xgb' or tuner == 'xgb-rank':
            tuner_obj = XGBTuner(tsk, loss_type='rank')
        elif tuner == 'xgb_knob':
            tuner_obj = XGBTuner(tsk, loss_type='rank', feature_type='knob')
        elif tuner == 'ga':
            tuner_obj = GATuner(tsk, pop_size=50)
        elif tuner == 'random':
            tuner_obj = RandomTuner(tsk)
        elif tuner == 'gridsearch':
            tuner_obj = GridSearchTuner(tsk)
        else:
            raise ValueError("Invalid tuner: " + tuner)

        if use_transfer_learning:
            if os.path.isfile(tmp_log_file):
                tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file))

        # do tuning
302 303
        tsk_trial = min(n_trial, len(tsk.config_space))
        tuner_obj.tune(n_trial=tsk_trial,
304 305 306
                       early_stopping=early_stopping,
                       measure_option=measure_option,
                       callbacks=[
307 308 309
                           autotvm.callback.progress_bar(tsk_trial, prefix=prefix),
                           autotvm.callback.log_to_file(tmp_log_file)
                       ])
310 311 312 313 314 315 316 317 318 319 320 321

    # pick best records to a cache file
    autotvm.record.pick_best(tmp_log_file, log_filename)
    os.remove(tmp_log_file)


########################################################################
# Finally, we launch tuning jobs and evaluate the end-to-end performance.

def tune_and_evaluate(tuning_opt):
    # extract workloads from relay program
    print("Extract tasks...")
322 323 324 325
    mod, params, input_shape, _ = get_network(network, batch_size=1)
    tasks = autotvm.task.extract_from_program(mod["main"], target=target,
                                              params=params,
                                              ops=(relay.op.nn.conv2d,))
326 327 328 329 330 331 332 333 334 335

    # run tuning tasks
    print("Tuning...")
    tune_tasks(tasks, **tuning_opt)

    # compile kernels with history best records
    with autotvm.apply_history_best(log_file):
        print("Compile...")
        with relay.build_config(opt_level=3):
            graph, lib, params = relay.build_module.build(
336
                mod, target=target, params=params)
337 338 339 340 341 342 343 344 345 346 347 348 349

        # export library
        tmp = tempdir()
        if use_android:
            from tvm.contrib import ndk
            filename = "net.so"
            lib.export_library(tmp.relpath(filename), ndk.create_shared)
        else:
            filename = "net.tar"
            lib.export_library(tmp.relpath(filename))

        # upload module to device
        print("Upload...")
Bing Xu committed
350
        remote = autotvm.measure.request_remote(device_key, '0.0.0.0', 9190,
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                                                timeout=10000)
        remote.upload(tmp.relpath(filename))
        rlib = remote.load_module(filename)

        # upload parameters to device
        ctx = remote.context(str(target), 0)
        module = runtime.create(graph, rlib, ctx)
        data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
        module.set_input('data', data_tvm)
        module.set_input(**params)

        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=10)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))

# We do not run the tuning in our webpage server since it takes too long.
# Uncomment the following line to run it by yourself.

# tune_and_evaluate(tuning_option)

######################################################################
# Sample Output
# -------------
# The tuning needs to compile many programs and extract feature from them.
# So a high performance CPU is recommended.
# One sample output is listed below.
# It takes about 2 hours on a 32T AMD Ryzen Threadripper.
#
# .. code-block:: bash
#
#    Extract tasks...
#    Tuning...
#    [Task  1/12]  Current/Best:   22.37/  52.19 GFLOPS | Progress: (544/1000) | 406.59 s Done.
#    [Task  2/12]  Current/Best:    6.51/  18.77 GFLOPS | Progress: (608/1000) | 325.05 s Done.
#    [Task  3/12]  Current/Best:    4.67/  24.87 GFLOPS | Progress: (480/1000) | 372.31 s Done.
#    [Task  4/12]  Current/Best:   11.35/  46.83 GFLOPS | Progress: (736/1000) | 602.39 s Done.
#    [Task  5/12]  Current/Best:    1.01/  19.80 GFLOPS | Progress: (448/1000) | 262.16 s Done.
#    [Task  6/12]  Current/Best:    2.47/  23.76 GFLOPS | Progress: (672/1000) | 563.85 s Done.
#    [Task  7/12]  Current/Best:   14.57/  33.97 GFLOPS | Progress: (544/1000) | 465.15 s Done.
#    [Task  8/12]  Current/Best:    1.13/  17.65 GFLOPS | Progress: (576/1000) | 365.08 s Done.
#    [Task  9/12]  Current/Best:   14.45/  22.66 GFLOPS | Progress: (928/1000) | 724.25 s Done.
#    [Task 10/12]  Current/Best:    3.22/  15.36 GFLOPS | Progress: (864/1000) | 564.27 s Done.
#    [Task 11/12]  Current/Best:   11.03/  32.23 GFLOPS | Progress: (736/1000) | 635.15 s Done.
#    [Task 12/12]  Current/Best:    8.00/  21.65 GFLOPS | Progress: (1000/1000) | 1111.81 s Done.
#    Compile...
#    Upload...
#    Evaluate inference time cost...
#    Mean inference time (std dev): 162.59 ms (0.06 ms)

######################################################################
#
# .. note:: **Experiencing Difficulties?**
#
#   The auto tuning module is error-prone. If you always see " 0.00/ 0.00 GFLOPS",
#   then there must be something wrong.
#
#   First, make sure you set the correct configuration of your device.
#   Then, you can print debug information by adding these lines in the beginning
#   of the script. It will print every measurement result, where you can find useful
#   error messages.
#
#   .. code-block:: python
#
#      import logging
#      logging.getLogger('autotvm').setLevel(logging.DEBUG)
#
#   Finally, always feel free to ask our community for help on https://discuss.tvm.ai