inception_v3.py 12 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
"""
Inception V3, suitable for images with around 299 x 299

Reference:
Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision."
arXiv preprint arXiv:1512.00567 (2015).

Adopted from https://github.com/apache/incubator-mxnet/blob/
             master/example/image-classification/symbols/inception-v3.py
"""
# pylint: disable=invalid-name,missing-docstring,unused-argument
from tvm import relay
from .init import create_workload
from . import layers

def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''):
    conv = layers.conv2d(
        data=data,
        channels=int(num_filter),
        kernel_size=kernel,
        strides=stride,
        padding=pad,
        name='%s%s_conv1' % (name, suffix))

    bn = layers.batch_norm_infer(data=conv, epsilon=2e-5, name='%s%s_bn' % (name, suffix))
    act = relay.nn.relu(data=bn)
    return act

def Pooling(data, kernel, stride, pad, pool_type, name):
    if pool_type == 'max':
        return relay.nn.max_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad)
32
    if pool_type == 'avg':
33 34
        return relay.nn.avg_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad,
                                   count_include_pad=True)
35
    raise ValueError("Invalid pooling type: " + pool_type)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

def Inception7A(data,
                num_1x1,
                num_3x3_red, num_3x3_1, num_3x3_2,
                num_5x5_red, num_5x5,
                pool, proj,
                name):
    tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name))
    tower_5x5 = Conv(data, num_5x5_red, name=('%s_tower' % name), suffix='_conv')
    tower_5x5 = Conv(tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=('%s_tower' % name),
                     suffix='_conv_1')
    tower_3x3 = Conv(data, num_3x3_red, name=('%s_tower_1' % name), suffix='_conv')
    tower_3x3 = Conv(tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name),
                     suffix='_conv_1')
    tower_3x3 = Conv(tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name),
                     suffix='_conv_2')
    pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
                      name=('%s_pool_%s_pool' % (pool, name)))

    cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv')
56
    concat = relay.concatenate((tower_1x1, tower_5x5, tower_3x3, cproj), axis=1)
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    return concat

# First Downsample
def Inception7B(data,
                num_3x3,
                num_d3x3_red, num_d3x3_1, num_d3x3_2,
                pool,
                name):
    tower_3x3 = Conv(data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
                     name=('%s_conv' % name))
    tower_d3x3 = Conv(data, num_d3x3_red, name=('%s_tower' % name), suffix='_conv')
    tower_d3x3 = Conv(tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
                      name=('%s_tower' % name), suffix='_conv_1')
    tower_d3x3 = Conv(tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
                      name=('%s_tower' % name), suffix='_conv_2')
    pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pad=(0, 0), pool_type="max",
                      name=('max_pool_%s_pool' % name))
74
    concat = relay.concatenate((tower_3x3, tower_d3x3, pooling), axis=1)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    return concat

def Inception7C(data,
                num_1x1,
                num_d7_red, num_d7_1, num_d7_2,
                num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4,
                pool, proj,
                name):
    tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name))
    tower_d7 = Conv(data=data, num_filter=num_d7_red, name=('%s_tower' % name), suffix='_conv')
    tower_d7 = Conv(data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3),
                    name=('%s_tower' % name), suffix='_conv_1')
    tower_d7 = Conv(data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0),
                    name=('%s_tower' % name), suffix='_conv_2')
    tower_q7 = Conv(data=data, num_filter=num_q7_red, name=('%s_tower_1' % name), suffix='_conv')
    tower_q7 = Conv(data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0),
                    name=('%s_tower_1' % name), suffix='_conv_1')
    tower_q7 = Conv(data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3),
                    name=('%s_tower_1' % name), suffix='_conv_2')
    tower_q7 = Conv(data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0),
                    name=('%s_tower_1' % name), suffix='_conv_3')
    tower_q7 = Conv(data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3),
                    name=('%s_tower_1' % name), suffix='_conv_4')
    pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
                      name=('%s_pool_%s_pool' % (pool, name)))
    cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1),
                 name=('%s_tower_2' % name), suffix='_conv')
    # concat
103
    concat = relay.concatenate((tower_1x1, tower_d7, tower_q7, cproj), axis=1)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    return concat

def Inception7D(data,
                num_3x3_red, num_3x3,
                num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3,
                pool,
                name):
    tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=('%s_tower' % name),
                     suffix='_conv')
    tower_3x3 = Conv(data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
                     name=('%s_tower' % name), suffix='_conv_1')
    tower_d7_3x3 = Conv(data=data, num_filter=num_d7_3x3_red, name=('%s_tower_1' % name),
                        suffix='_conv')
    tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3),
                        name=('%s_tower_1' % name), suffix='_conv_1')
    tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0),
                        name=('%s_tower_1' % name), suffix='_conv_2')
    tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2),
                        name=('%s_tower_1' % name), suffix='_conv_3')
    pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, pad=(0, 0),
                      name=('%s_pool_%s_pool' % (pool, name)))
    # concat
126
    concat = relay.concatenate((tower_3x3, tower_d7_3x3, pooling), axis=1)
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    return concat

def Inception7E(data,
                num_1x1,
                num_d3_red, num_d3_1, num_d3_2,
                num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2,
                pool, proj,
                name):
    tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name))
    tower_d3 = Conv(data=data, num_filter=num_d3_red, name=('%s_tower' % name), suffix='_conv')
    tower_d3_a = Conv(data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1),
                      name=('%s_tower' % name), suffix='_mixed_conv')
    tower_d3_b = Conv(data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0),
                      name=('%s_tower' % name), suffix='_mixed_conv_1')
    tower_3x3_d3 = Conv(data=data, num_filter=num_3x3_d3_red, name=('%s_tower_1' % name),
                        suffix='_conv')
    tower_3x3_d3 = Conv(data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1),
                        name=('%s_tower_1' % name), suffix='_conv_1')
    tower_3x3_d3_a = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1),
                          name=('%s_tower_1' % name), suffix='_mixed_conv')
    tower_3x3_d3_b = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0),
                          name=('%s_tower_1' % name), suffix='_mixed_conv_1')
    pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
                      name=('%s_pool_%s_pool' % (pool, name)))
    cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name),
                 suffix='_conv')
    # concat
    concat = relay.concatenate(
155
        (tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj), axis=1)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    return concat

def get_net(batch_size,
            num_classes,
            image_shape,
            dtype):
    """Get network a Inception v3 network.

    batch_size : int
        The batch size used in the model

    num_classes : int, optional
        Number of claseses

    image_shape : tuple, optional
        The input image shape

    dtype : str, optional
        The data type

    Returns
    -------
    net : relay.Function
        The dataflow.
    """
    data_shape = (batch_size,) + image_shape
    data = relay.var("data",
                     shape=data_shape,
                     dtype=dtype)

    # stage 1
    conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv")
    conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1")
    conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2")
    pool = Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0),
                   name="pool")
    # stage 2
    conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3")
    conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4")
    pool1 = Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0),
                    name="pool1")

    # stage 3
    in3a = Inception7A(pool1, 64,
                       64, 96, 96,
                       48, 64,
                       "avg", 32, "mixed")

    in3b = Inception7A(in3a, 64,
                       64, 96, 96,
                       48, 64,
                       "avg", 64, "mixed_1")
    in3c = Inception7A(in3b, 64,
                       64, 96, 96,
                       48, 64,
                       "avg", 64, "mixed_2")
    in3d = Inception7B(in3c, 384,
                       64, 96, 96,
                       "max", "mixed_3")
    # stage 4
    in4a = Inception7C(in3d, 192,
                       128, 128, 192,
                       128, 128, 128, 128, 192,
                       "avg", 192, "mixed_4")
    in4b = Inception7C(in4a, 192,
                       160, 160, 192,
                       160, 160, 160, 160, 192,
                       "avg", 192, "mixed_5")
    in4c = Inception7C(in4b, 192,
                       160, 160, 192,
                       160, 160, 160, 160, 192,
                       "avg", 192, "mixed_6")
    in4d = Inception7C(in4c, 192,
                       192, 192, 192,
                       192, 192, 192, 192, 192,
                       "avg", 192, "mixed_7")
    in4e = Inception7D(in4d, 192, 320,
                       192, 192, 192, 192,
                       "max", "mixed_8")
    # stage 5
    in5a = Inception7E(in4e, 320,
                       384, 384, 384,
                       448, 384, 384, 384,
                       "avg", 192, "mixed_9")
    in5b = Inception7E(in5a, 320,
                       384, 384, 384,
                       448, 384, 384, 384,
                       "max", 192, "mixed_10")

    # pool
    pool = Pooling(data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", pad=(0, 0),
                   name="global_pool")

    flatten = relay.nn.batch_flatten(pool)
    fc1 = relay.nn.dense(flatten, relay.var("fc1_weight"), units=num_classes)
    fc1 = relay.nn.bias_add(fc1, relay.var("fc2_bias"))
    inception_v3 = relay.nn.softmax(data=fc1)
    args = relay.ir_pass.free_vars(inception_v3)
    return relay.Function(args, inception_v3)

def get_workload(batch_size=1, num_classes=1000,
                 image_shape=(3, 299, 299), dtype="float32"):
    """Get benchmark workload for InceptionV3

    Parameters
    ----------
    batch_size : int
        The batch size used in the model

    num_classes : int, optional
        Number of classes

    image_shape : tuple, optional
        The input image shape

    dtype : str, optional
        The data type

    Returns
    -------
    net : nnvm.Symbol
        The computational graph

    params : dict of str to NDArray
        The parameters.
    """
    net = get_net(batch_size, num_classes, image_shape, dtype)
    return create_workload(net)