caffe2.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19
# pylint: disable=import-self, invalid-name, line-too-long, unused-argument
"""Caffe2 frontend"""
from __future__ import absolute_import as _abs
20
import tvm
Zhi committed
21
from .. import analysis
22
from .. import expr as _expr
23
from .. import module as _module
24 25 26 27 28 29 30 31 32 33 34 35
from .. import op as _op
from ... import nd as _nd
from .common import AttrCvt, Renamer
from .common import get_relay_op, new_var, infer_channels

__all__ = ['from_caffe2']

def dimension_picker(prefix, surfix=''):
    def _impl(attr):
        kernel = attr['kernel_shape']
        if len(kernel) == 2:
            return prefix + '2d' + surfix
36
        raise tvm.error.OpAttributeUnImplemented(
37
            'Non-2D kernels are not supported for operator {}2d'.format(prefix))
38 39 40 41 42 43 44 45 46 47 48

    return _impl


def revert_caffe2_pad(pads):
    """Caffe2 requires two times the normal padding."""
    if len(pads) == 4:
        pads = pads[:2]
    elif len(pads) == 2:
        pass
    else:
49 50
        raise tvm.error.OpAttributeInvalid(
            'Number of pads must equal 2 or 4.')
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    return pads


def dimension_constraint():
    def _dim_check(args):
        if len(args['kernel_shape']) == 2:
            return True
        return False

    return _dim_check, "Only 2d kernel supported."


def _clean_up_pool_args(args):
    """ A helper function to clean up common arguments in conv and pooling ops.
    """
    assert isinstance(args, dict)

    if 'stride_h' in args and 'stride_w' in args:
        assert 'stride' not in args and 'strides' not in args
        args['strides'] = [args['stride_h'], args['stride_w']]
        args.pop('stride_h')
        args.pop('stride_w')
    elif 'stride' in args:
        args['strides'] = [args['stride'], args['stride']]
        args.pop('stride')

    # rename 'kernel', 'kernels', to 'kernel_shape'
    if 'kernel_h' in args and 'kernel_w' in args:
        assert 'kernel' not in args and 'kernels' not in args
        args['kernel_shape'] = [args['kernel_h'], args['kernel_w']]
        args.pop('kernel_h')
        args.pop('kernel_w')
    elif 'kernel' in args:
        args['kernel_shape'] = [args['kernel'], args['kernel']]
        args.pop('kernel')
    elif 'kernels' in args:
        args['kernel_shape'] = args['kernels']
        args.pop('kernels')

    if 'pad_t' in args and 'pad_l' in args and 'pad_b' in args and 'pad_r' in args:
        assert 'pad' not in args and 'pads' not in args
        args['pads'] = [
            args['pad_t'], args['pad_l'], args['pad_b'], args['pad_r']
        ]
        for pad in ['pad_t', 'pad_l', 'pad_b', 'pad_r']:
            args.pop(pad)
    elif 'pad' in args:
        args['pads'] = [args['pad'], args['pad']]
        args.pop('pad')

    if 'dilation_h' in args and 'dilation_w' in args:
        assert 'dilation' not in args and 'dilations' not in args
        args['dilations'] = [args['dilation_h'], args['dilation_w']]
        args.pop('dilation_h')
        args.pop('dilation_w')
    elif 'dilation' in args:
        args['dilations'] = [args['dilation'], args['dilation']]
        args.pop('dilation')

    return args


class Caffe2OpConverter(object):
    """ A helper class for holding Caffe2 op converters.
    """

    @classmethod
    def get_converter(cls):
        """ Get converter.

        :return: converter, which should be `_impl`.
        """

        if hasattr(cls, '_impl'):
            return getattr(cls, '_impl')
126
        raise tvm.error.OpNotImplemented(
127
            'Operator {} is not supported in frontend Caffe2.'.format(cls.__name__))
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158


_caffe2_internal_args = [
    # nnpack args
    'algo',
    'convolution_transform_strategy',
    'float16_compute',
    'shared_buffer',

    # training args
    'init_params',
    'cudnn_exhaustive_search',
    'exhaustive_search',

    # training args
    'adj',
    'hwgq',

    # args that we don't care
    'legacy_pad',
]


class Elemwise(Caffe2OpConverter):
    """ A helper class for elemwise op converters.
    """
    name = ''
    @classmethod
    def _impl(cls, inputs, args, params):
        assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(
            len(inputs))
159
        op_name = cls.name
160
        conv_ops = ["conv2d", "conv2d_transpose"]
161
        if args.get('broadcast', 0) and any(x in str(inputs[0]) for x in conv_ops):
162
            # TODO(zhreshold): remove hard coded infershape
163
            axis = int(args.get('axis', 0))
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
            inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2)
        return get_relay_op(op_name)(*inputs)


class Add(Elemwise):
    """ Operator converter for Add.
    """
    name = 'add'


class Pool(Caffe2OpConverter):
    """ A helper class for pool op converters.
    """

    name = ''
    @classmethod
    def _impl(cls, inputs, args, params):
        _clean_up_pool_args(args)
        if 'global_pooling' in args and args['global_pooling'] == 1:
            op_name = dimension_picker('global_' + cls.name)
            return get_relay_op(op_name(args))(*inputs)

        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad),
                'strides': 'strides',
            },
            ignores=['dilations', 'order', 'legacy_pad', 'global_pooling'],
            extras={'ceil_mode': False},
            custom_check=dimension_constraint())(inputs, args, params)


class AveragePool(Pool):
    name = 'avg_pool'


class MaxPool(Pool):
    name = 'max_pool'


class Conv(Caffe2OpConverter):
    """ Operator converter for Conv.
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        # get number of channels
        channels = infer_channels(inputs[1])
        args['channels'] = channels
        _clean_up_pool_args(args)
        out = AttrCvt(
            op_name=dimension_picker('conv'),
            transforms={
                'group': ('groups', 1),
                'kernel_shape': 'kernel_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad),
                'strides': 'strides',
                'dilations': ('dilation', (1, 1)),
                'order': ('data_layout', ("NCHW"), lambda x: x if isinstance(x, str) else x.decode('UTF-8')),
            },
            excludes=[],
227
            ignores=_caffe2_internal_args,
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            custom_check=dimension_constraint())(inputs[:2], args, params)
        use_bias = len(inputs) == 3
        if use_bias:
            out = _op.nn.bias_add(out, inputs[2])
        return out


class Concat(Caffe2OpConverter):
    """ Operator converter for Concat.
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        def _get_axis_from_order_str(order):
            order = order if isinstance(order, str) else order.decode('UTF-8')
            if order == 'NCHW':
                return 1
245
            if order == 'NHWC':
246
                return 3
247
            raise tvm.error.OpAttributeUnImplemented(
248
                'Order {} is not supported in operator Concat.'.format(order))
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

        return AttrCvt(
            op_name='concatenate',
            transforms={
                'order': ('axis', (1), _get_axis_from_order_str),
            },
            excludes=['add_axis'])((inputs,), args, params)


class NormalizePlanarYUV(Caffe2OpConverter):
    """ Operator converter for NormalizePlanarYUV.
    caffe2 definition: https://github.com/pytorch/pytorch/blob/master/caffe2/operators/norm_planar_yuv_op.cc
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        assert len(inputs) == 3
        mean = _op.expand_dims(inputs[1], axis=2, num_newaxis=2)
        std = _op.expand_dims(inputs[2], axis=2, num_newaxis=2)

269
        return _op.divide(_op.subtract(inputs[0], mean), std)
270 271 272 273 274 275 276 277 278 279 280 281 282


class ResizeNearest(Caffe2OpConverter):
    """ Operator converter for Upsample (nearest mode).
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        width_scale = args['width_scale'] if 'width_scale' in args else 1
        height_scale = args['height_scale'] if 'height_scale' in args else 1
        assert width_scale == height_scale

        return _op.nn.upsampling(
283
            inputs[0], scale_h=int(width_scale), scale_w=int(width_scale), method="NEAREST_NEIGHBOR")
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385


class Sum(Caffe2OpConverter):
    """ Operator converter for Sum.
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        # Sum Operator
        for in_index in range(len(inputs) - 1):
            inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1])

        return inputs[len(inputs) - 1]


class Softmax(Caffe2OpConverter):
    """ Operator converter for Softmax.
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        # set default value when axis is not set in the model
        if 'axis' not in args:
            args['axis'] = 1
        return AttrCvt('softmax', transforms={'axis': ('axis', args['axis'])})(inputs, args, params)


class FC(Caffe2OpConverter):
    """ Operator converter for FC.
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        inputs[0] = _op.nn.batch_flatten(inputs[0])
        units = infer_channels(inputs[1])
        res = _op.nn.dense(inputs[0], inputs[1], units=units)
        use_bias = len(inputs) == 3
        if use_bias:
            res = _op.nn.bias_add(res, inputs[2])
        return res


class SpatialBN(Caffe2OpConverter):
    """ Operator converter for SpatialBN.
    """

    @classmethod
    def _impl(cls, inputs, args, params):
        return AttrCvt(
            op_name='batch_norm',
            disables=['momentum'],
            ignores=[
                'order', 'spatial', 'is_test', 'consumed_inputs', 'num_batches'
            ])(inputs, args, params)


# compatible operators that do NOT require any conversion.
_identity_list = []

# _convert_map defines maps of name to converter functor(callable)
# for 1 to 1 mapping, use Renamer if nothing but name is different
# use AttrCvt if attributes need to be converted
# for 1 to N mapping(composed), use custom callable functions
# for N to 1 mapping, currently not supported(?)

# Minimal set of ops for squeezenet and resnet50
def _get_convert_map():
    return {
        # caffe2 common operators
        'Add': Add.get_converter(),
        'Sum': Sum.get_converter(),
        'Softmax': Softmax.get_converter(),

        # nn
        'AveragePool': AveragePool.get_converter(),
        'MaxPool': MaxPool.get_converter(),
        'Conv': Conv.get_converter(),
        'Concat': Concat.get_converter(),
        'FC': FC.get_converter(),
        'SpatialBN': SpatialBN.get_converter(),
        'ResizeNearest': ResizeNearest.get_converter(),
        'Relu': AttrCvt('relu', {}, ignores=['order']),
        'Sigmoid': Renamer('sigmoid'),
        'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']),

        # c2 image preprocessing ops
        'NormalizePlanarYUV': NormalizePlanarYUV.get_converter(),
    }


class Caffe2NetDef(object):
    """A helper class for handling Relay expression copying from pb2.GraphProto.
    Definition: https://github.com/pytorch/pytorch/blob/master/caffe2/proto/caffe2.proto
    """

    def __init__(self, shape, dtype):
        self._nodes = {}
        self._params = {}
        self._visited_nodes = set()
        self._ops = {}
        self._shape = shape
        self._dtype = dtype
386
        self._mod = _module.Module({})
387 388 389 390 391 392 393 394 395 396 397

    def from_caffe2(self, init_net, predict_net):
        """Construct Relay expression from caffe2 graph.

        Parameters
        ----------
        init_net : protobuf object
        predict_net : protobuf object

        Returns
        -------
398 399 400
        mod : tvm.relay.Module
            The module that optimizations will be performed on.

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        params : dict
            A dict of name: tvm.nd.array pairs, used as pretrained weights
        """
        from caffe2.python import workspace
        workspace.RunNetOnce(init_net)

        # Input
        input_name = predict_net.op[0].input[0]

        # Params
        self._params = {}
        used_blobs = set()
        for c2_op in predict_net.op:
            for i in c2_op.input:
                used_blobs.add(i)
        for blob in workspace.Blobs():
            if blob in used_blobs and blob != input_name:
                self._params[blob] = _nd.array(workspace.FetchBlob(blob))

        # Variables
        self._nodes = {}
        for blob in predict_net.external_input:
            if blob in self._params:
                self._nodes[blob] = new_var(blob, shape=self._params[blob].shape, dtype=self._params[blob].dtype)
            else:
                shape = self._shape[blob] if blob in self._shape else ()
                if isinstance(self._dtype, dict) and blob in self._dtype:
                    dtype = str(self._dtype[blob])
                elif isinstance(self._dtype, str):
                    dtype = self._dtype
                else:
                    dtype = "float32"
                self._nodes[blob] = new_var(blob, shape=shape, dtype=dtype)

        # Ops
        for c2_op in predict_net.op:
            for blob in c2_op.output:
                self._ops[blob] = c2_op

        for c2_op in predict_net.op:
            self._process_op(c2_op)

        # Outputs
        out = []
        for blob in predict_net.external_output:
            out.append(self._nodes[blob])

        if len(out) > 1:
            outputs = _expr.Tuple(out)
        else:
            outputs = out[0]

Zhi committed
453
        func = _expr.Function(analysis.free_vars(outputs), outputs)
454
        self._mod["main"] = func
455

456
        return self._mod, self._params
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

    def _get_node(self, blob):
        """Get the Symbol of blob and detect cyclic dependency in the graph."""
        if blob in self._nodes:
            return self._nodes[blob]

        assert blob not in self._visited_nodes, 'Cyclic dependency in the graph (in {})'.format(
            blob)
        self._visited_nodes.add(blob)

        self._process_op(self._ops[blob])
        return self._nodes[blob]

    def _process_op(self, c2_op):
        op_type = c2_op.type
        args = self._parse_arg(c2_op.arg)
        inputs = [self._get_node(i) for i in c2_op.input]
        tvm_op = self._convert_operator(op_type, inputs, args)

        if not isinstance(tvm_op, _expr.TupleWrapper):
            self._nodes[c2_op.output[0]] = tvm_op
        else:
            for k, i in zip(list(c2_op.output), range(len(tvm_op))):
                self._nodes[k] = tvm_op[i]

    def _parse_arg(self, arg):
        """Convert a list of Argument to a dict, with names as keys."""
        args = {}
        for a in arg:
            for f in ['f', 'i', 's']:
                if a.HasField(f):
                    args[a.name] = getattr(a, f)
            for f in ['floats', 'ints', 'strings']:
                if list(getattr(a, f)):
                    assert a.name not in args, "Only one type of attr is allowed"
                    args[a.name] = tuple(getattr(a, f))
            for f in ['n']:
                if a.HasField(f):
                    raise NotImplementedError(
                        "Field {} is not supported in relay.".format(f))
            for f in ['nets']:
                if list(getattr(a, f)):
                    raise NotImplementedError(
                        "Field {} is not supported in relay.".format(f))
            if a.name not in args:
                raise ValueError("Cannot parse attribute: \n{}\n.".format(a))
        return args

    def _convert_operator(self,
                          op_type,
                          inputs,
                          args,
                          identity_list=None,
                          convert_map=None):
        """Convert from Caffe2 operator to Relay operator.
512
        The converter must specify conversions explicitly for incompatible name, and
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
        apply handlers to operator attributes.

        Parameters
        ----------
        op_type : str
            Operator name, such as Convolution, FullyConnected
        inputs : list of tvm.relay.expr.Function
            List of input inputs.
        args : dict
            Dict of operator attributes
        identity_list : list
            List of operators that don't require conversion
        convert_map : dict
            Dict of name : callable, where name is the op's name that
            require conversion to relay, callable are functions which
            take args and return (new_op_type, new_args)

        Returns
        -------
        func : tvm.relay.expr.Function
            Converted relay function
        """
        identity_list = identity_list if identity_list else _identity_list
        convert_map = convert_map if convert_map else _get_convert_map()
        if op_type in identity_list:
            func = get_relay_op(op_type)(*inputs, **args)
        elif op_type in convert_map:
            # Add a sanitizing step to convert all byte strings in args to strings
            func = convert_map[op_type](inputs, args, self._params)
        else:
543 544
            raise tvm.error.OpNotImplemented(
                'Operator {} is not supported in frontend Caffe2.'.format(op_type))
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        return func


def from_caffe2(init_net, predict_net, shape=None, dtype="float32"):
    """Load caffe2 graph which contains init_net and predict_net into Relay Function.

    Parameters
    ----------
    init_net : protobuf object
        Caffe2 NetDef containing the weights

    predict_net : protobuf object
        Caffe2 NetDef containing the graph

    shape : dict of str to tuple
        The input shape to the graph

    dtype : str or dict of str to str
        The input types to the graph

    Returns
    -------
567 568
    mod : tvm.relay.Module
        The module that optimizations will be performed on.
569 570 571 572 573 574 575

    params : dict of str to tvm.ndarray
        Dict of converted parameters stored in tvm.ndarray format
    """

    caffe2 = Caffe2NetDef(shape, dtype)
    return caffe2.from_caffe2(init_net, predict_net)