onnx.py 45 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22
# pylint: disable=invalid-name, import-self, len-as-condition, unused-argument, too-many-lines
"""ONNX: Open Neural Network Exchange frontend for Relay."""
from __future__ import absolute_import as _abs

import logging
import numpy as np
Zhi committed
23
import tvm
24
from ... import nd as _nd
Zhi committed
25
from .. import analysis
Zhi committed
26
from .. import transform as _transform
27
from .. import expr as _expr
28
from .. import module as _module
29 30 31 32 33 34 35 36 37 38 39
from .. import op as _op
from .common import AttrCvt, Renamer
from .common import get_relay_op, new_var, infer_shape, infer_channels, get_name

__all__ = ['from_onnx']

def dimension_picker(prefix, surfix=''):
    def _impl(attr):
        kernel = attr['kernel_shape']
        if len(kernel) == 2:
            return prefix + '2d' + surfix
40 41 42
        msg = 'Only 2D kernels are supported for operator {}.'
        op_name = prefix + '2d'
        raise tvm.error.OpAttributeInvalid(msg.format(op_name))
43 44 45 46 47 48 49 50 51 52

    return _impl

def revert_caffe2_pad(pads):
    """Caffe2 requires two times the normal padding."""
    if len(pads) == 4:
        pads = pads[:2]
    elif len(pads) == 2:
        pass
    else:
53 54
        raise tvm.error.OpAttributeInvalid(
            'Number of pads must be either 2 or 4.')
55 56
    return pads

57 58 59 60 61 62

def onnx_storage_order2layout(storage_order):
    """converter of onnx storage order parameter to tvm storage order format"""
    if storage_order not in (0, 1):
        raise tvm.error.OpAttributeInvalid('Mode of storage_order must be either 0 or 1')

63
    return 'NCHW' if storage_order == 0 else 'NHWC'
64 65


66 67 68 69 70 71 72 73
def dimension_constraint():
    def _dim_check(attrs):
        if len(attrs['kernel_shape']) == 2:
            return True
        return False

    return _dim_check, "Only 2d kernel supported."

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class OnnxOpConverter(object):
    """ A helper class for holding onnx op converters.
    """

    @classmethod
    def get_converter(cls, opset):
        """ Get converter matches given opset.

        Parameters
        ----------
        opset: int
            opset from model.

        Returns
        -------
        converter, which should be `_impl_vx`. Number x is the biggest
            number smaller than or equal to opset belongs to all support versions.
        """
        versions = [
            int(d.replace('_impl_v', '')) for d in dir(cls) if '_impl_v' in d
        ]
        versions = sorted(versions + [opset])
        version = versions[
            max([i for i, v in enumerate(versions) if v == opset]) - 1]
        if hasattr(cls, '_impl_v{}'.format(version)):
            return getattr(cls, '_impl_v{}'.format(version))
        raise NotImplementedError(
            'opset version {} of {} not implemented'.format(
                version, cls.__name__))


class Elemwise(OnnxOpConverter):
    """ A helper class for elemwise op converters.
    """
    name = ''

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(
            len(inputs))
        op_name = cls.name
        conv_ops = ["conv2d", "conv2d_transpose"]
        if attr.get('broadcast', 0) and any(x in str(inputs[0]) for x in conv_ops):
            # TODO(zhreshold): remove hard coded infershape
            axis = int(attr.get('axis', 0))
            inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2)
        return get_relay_op(op_name)(*inputs)

123

124 125 126 127 128 129 130 131 132 133 134 135 136 137
class Pool(OnnxOpConverter):
    """ A helper class for pool op converters.
    """
    name = ''

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad)
            },
            # very weird attributes here in onnx, force check
138
            ignores=['dilations', 'auto_pad'],
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            # TODO(zhreshold): make sure ceil_mode in onnx, and layout?
            extras={'ceil_mode': False},
            custom_check=dimension_constraint())(inputs, attr, params)


class Absolute(OnnxOpConverter):
    """ Operator converter for Absolute.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.nn.relu(inputs[0]) + _op.nn.relu(_op.negative(inputs[0]))


class Add(Elemwise):
    """ Operator converter for Add.
    """
    name = 'add'


class AveragePool(Pool):
    """ Operator converter for AveragePool.
    """
    name = 'avg_pool'


class BatchNorm(OnnxOpConverter):
    """ Operator converter for BatchNorm.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # TODO(zhreshold): 'spatial' is not properly handled here.
        out = AttrCvt(
            op_name='batch_norm',
            ignores=['spatial', 'is_test', 'consumed_inputs', 'momentum'])(inputs, attr,
                                                                           params)
        return out[0]


179 180 181 182 183 184 185 186 187
class InstanceNorm(OnnxOpConverter):
    """ Operator converter for BatchNorm.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return AttrCvt(op_name='instance_norm')(inputs, attr, params)


188 189 190 191 192 193 194 195 196 197 198 199
class Conv(OnnxOpConverter):
    """ Operator converter for Conv.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        out = AttrCvt(op_name=dimension_picker('conv'),
                      transforms={
                          'kernel_shape': 'kernel_size',
                          'dilations': ('dilation', (0, 0)),
                          'pads': ('padding', (0, 0), revert_caffe2_pad),
                          'group': ('groups', 1)},
200
                      ignores=['auto_pad'],
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
                      custom_check=dimension_constraint())(inputs[:2], attr, params)
        use_bias = len(inputs) == 3
        if use_bias:
            out = _op.nn.bias_add(out, inputs[2])
        return out


class ConvTranspose(OnnxOpConverter):
    """ Operator converter for ConvTranspose.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # get number of channels
        channels = infer_channels(inputs[1], True)
        attr['channels'] = channels
        groups = attr.pop('group')
        attr['groups'] = groups
        out = AttrCvt(
            op_name=dimension_picker('conv', '_transpose'),
            transforms={
                'kernel_shape': 'kernel_size',
                'dilations': ('dilation', (0, 0)),
                'pads': ('padding', (0, 0), revert_caffe2_pad)
            },
            disables=['output_shape'],
            custom_check=dimension_constraint())(inputs[:2], attr, params)
        use_bias = len(inputs) == 3
        if use_bias:
            out = _op.nn.bias_add(out, inputs[2])
        return out


class Div(Elemwise):
234 235
    """ Operator converter for Divide.
    """
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    name = 'divide'


class Elu(OnnxOpConverter):
    """ Operator converter for Elu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 1.0))
        return _expr.const(-alpha) * _op.nn.relu(_expr.const(1.) - _op.exp(inputs[0])) + \
                                     _op.nn.relu(inputs[0])


class Gemm(OnnxOpConverter):
    """ Operator converter for Gemm.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 3, "Gemm op take 3 inputs, {} given".format(
            len(inputs))
        # Y = alpha * A * B + beta * C
        alpha = float(attr.get('alpha', 1.0))
        beta = float(attr.get('beta', 1.0))
        transA = int(attr.get('transA', 0))
        transB = int(attr.get('transB', 0))
        # get number of channels
        channels = infer_channels(inputs[1], not transB)
        if transA:
            inputs[0] = _op.transpose(inputs[0], axes=(1, 0))
        if not transB:
            inputs[1] = _op.transpose(inputs[1], axes=(1, 0))
        inputs[0] = _op.nn.batch_flatten(inputs[0])
        out = _op.nn.dense(_expr.const(alpha) * inputs[0],
                           inputs[1], units=channels)
        return _op.nn.bias_add(out, _expr.const(beta) * inputs[2])

274

275 276 277 278 279 280 281 282 283 284
class MatMul(OnnxOpConverter):
    """ Operator converter for MatMul.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 2, "MatMul op take 2 inputs, {} given".format(len(inputs))
        input_1_t = _op.transpose(inputs[1], axes=(1, 0))
        return _op.nn.dense(inputs[0], input_1_t)

285

286
class MaxPool(Pool):
287 288
    """ Operator converter for MaxPool
    """
289 290
    name = 'max_pool'

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    @classmethod
    def _impl_v8(cls, inputs, attr, params):
        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad),
                'storage_order': ('layout', 'NCHW', onnx_storage_order2layout),
            },
            # very weird attributes here in onnx, force check
            ignores=['dilations', 'auto_pad'],
            # TODO(higumachan): make sure ceil_mode in onnx, and layout?
            extras={'ceil_mode': False},
            custom_check=dimension_constraint())(inputs, attr, params)

    @classmethod
    def _impl_v10(cls, inputs, attr, params):
        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad),
                'storage_order': ('layout', 'NCHW', onnx_storage_order2layout),
                'ceil_mode': 'ceil_mode'
            },
            # very weird attributes here in onnx, force check
            ignores=['dilations', 'auto_pad'],
            custom_check=dimension_constraint())(inputs, attr, params)
319 320

class Mul(Elemwise):
321 322
    """ Operator converter for Multiply.
    """
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    name = 'multiply'


class Pad(OnnxOpConverter):
    """ Operator converter for Pad.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        pad_width = []
        pads = attr.pop('paddings')
        dims = int(len(pads) / 2)
        for i in range(dims):
            pad_width.append((pads[i], pads[i+dims]))
        attr['pad_width'] = pad_width
338 339 340 341 342 343 344
        pad_mode = attr.get('mode', 'constant').decode('utf-8')
        if pad_mode in ['constant', 'edge', 'reflect']:
            attr['pad_mode'] = pad_mode
            attr.pop('mode', None)
        else:
            raise tvm.error.OpAttributeInvalid(
                'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.')
345 346 347 348 349 350

        return AttrCvt(
            _op.nn.pad,
            transforms={
                'value': 'pad_value',
            },
351
            )(inputs, attr, params)
352 353 354 355 356 357 358 359 360

    @classmethod
    def _impl_v2(cls, inputs, attr, params):
        pad_width = []
        pads = attr.pop('pads')
        dims = int(len(pads) / 2)
        for i in range(dims):
            pad_width.append((pads[i], pads[i+dims]))
        attr['pad_width'] = pad_width
361 362 363 364 365 366 367
        pad_mode = attr.get('mode', 'constant').decode('utf-8')
        if pad_mode in ['constant', 'edge', 'reflect']:
            attr['pad_mode'] = pad_mode
            attr.pop('mode', None)
        else:
            raise tvm.error.OpAttributeInvalid(
                'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.')
368 369 370 371 372 373

        return AttrCvt(
            'pad',
            transforms={
                'value': 'pad_value',
            },
374
            )(inputs, attr, params)
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405


class ParametricSoftPlus(OnnxOpConverter):
    """ Operator converter for ParametricSoftPlus.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = _expr.const(float(attr.get('alpha', 1.0)))
        beta = _expr.const(float(attr.get('beta', 1.0)))
        return _op.log(_op.exp(beta * inputs[0]) + _expr.const(1.)) * alpha


class Prelu(OnnxOpConverter):
    """ Operator converter for Prelu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 2, "Prelu need 2 inputs, {} given".format(len(inputs))
        return _op.nn.prelu(inputs[0], inputs[1])


class Reciprocal(OnnxOpConverter):
    """ Operator converter for Reciprocal.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _expr.const(1.0) / inputs[0]

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

class Flatten(OnnxOpConverter):
    """ Operator converter for Flatten.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 1)
        if axis == 1:
            out = _op.nn.batch_flatten(inputs[0])
        else:
            newshape = [0] * (axis + 1)
            newshape[axis] = -1
            out = _op.reshape(inputs[0], list(newshape))
        return out


423 424 425 426 427 428 429 430 431 432 433 434 435
class Reshape(OnnxOpConverter):
    """ Operator converter for Reshape.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if 'shape' in attr:
            return _op.reshape(inputs[0], attr['shape'])

        if get_name(inputs[1]) in params:
            shape = tuple(params[inputs[1].name_hint].asnumpy())
            out = _op.reshape(inputs[0], shape)
        else:
Zhi committed
436 437
            data, shape = inputs
            logging.warning("Constant evaluating Reshape's shape argument, may reduce performance")
Zhi committed
438
            shape_params = analysis.free_vars(shape)
Zhi committed
439 440 441 442 443 444 445 446
            func = _expr.Function(shape_params, shape)
            mod = _module.Module.from_expr(func)
            seq = _transform.Sequential([_transform.InferType(),
                                         _transform.FoldConstant(),
                                         _transform.FuseOps(0),
                                         _transform.InferType()])
            with tvm.relay.PassContext(opt_level=2):
                mod = seq(mod)
447
            with tvm.relay.build_config(opt_level=0):
Zhi committed
448 449 450 451 452 453 454 455 456
                ex = tvm.relay.create_executor("debug", mod=mod)
                inputs = []
                for sp in shape_params:
                    if not sp.name_hint in params:
                        sh = [int(i) for i in sp.type_annotation.shape]
                        inputs.append(
                            tvm.nd.array(np.random.rand(*sh).astype('float32')))
                static_shape = ex.evaluate()(*inputs, **params)
            out = _op.reshape(data, newshape=tuple(static_shape.asnumpy()))
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

        return out

class Concat(OnnxOpConverter):
    """ Operator converter for Concat.
    """

    @classmethod
    def _impl_v1(cls, inputs, args, params):
        return AttrCvt(op_name='concatenate')((inputs,), args)

class Scale(OnnxOpConverter):
    """ Operator converter for Scale.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        scale = float(attr.get('scale', 1.0))
        return inputs[0] * _expr.const(scale)


class Selu(OnnxOpConverter):
    """ Operator converter for Selu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 1.6732))
        gamma = float(attr.get('gamma', 1.0507))
        return _expr.const(gamma) * (_expr.const(-alpha) *
                                     _op.nn.relu(_expr.const(1.) - _op.exp(inputs[0])) +
                                     _op.nn.relu(inputs[0]))


class ScaledTanh(OnnxOpConverter):
    """ Operator converter for ScaledTanh.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 1.0))
        beta = float(attr.get('beta', 1.0))
        return _op.tanh(_expr.const(beta) * inputs[0]) * _expr.const(alpha)


class SoftPlus(OnnxOpConverter):
    """ Operator converter for SoftPlus.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.log(_op.exp(inputs[0]) + _expr.const(1.))


class Softsign(OnnxOpConverter):
    """ Operator converter for Softsign.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return inputs[0] / (_expr.const(1.) + Absolute.get_converter(1)(inputs, attr, params))


class Sub(Elemwise):
521 522
    """ Operator converter for Subtract.
    """
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    name = 'subtract'


class Sum(OnnxOpConverter):
    """ Operator converter for Sum.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # Onnx Sum Operator
        for in_index in range(len(inputs) - 1):
            inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1])

        return inputs[len(inputs) - 1]


class ThresholdedRelu(OnnxOpConverter):
    """ Operator converter for ThresholdedRelu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 0.0))
        alpha_tensor = _op.full_like(inputs[0], fill_value=_expr.const(alpha))
        mask = _op.greater(inputs[0], alpha_tensor).astype("float32")
        return inputs[0] * mask


def _broadcast_constraint():

    def _broadcast_check(attrs):
        if attrs.get('axis', None):
            return False
        return True

    return _broadcast_check, "Specifying broadcast axis not allowed."


def _fully_connected(opset):

    def _impl(inputs, attr, params):
        # get number of channels
        channels = infer_channels(inputs[1], params)
        attr['units'] = channels
        return AttrCvt('dense', ignores=['axis', 'axis_w'])(inputs, attr)

    return _impl


class Upsample(OnnxOpConverter):
    """ Operator converter for Upsample (nearest mode).
    """

    @classmethod
577
    def _impl_v9(cls, inputs, attr, params):
578
        scales = attr.get('scales')
579 580 581 582 583
        if not scales:
            #Here we are going to higher OPSET version.
            assert len(inputs) == 2, "Upsample op take 2 inputs, {} given".format(len(inputs))
            scales = params[inputs[1].name_hint].asnumpy()
            inputs = inputs[:1]
584 585 586
        assert len(scales) == 4 and scales[0] == 1.0 and scales[1] == 1.0 and scales[2] == scales[3]
        mode = attr.get('mode')
        if mode == b'nearest':
587
            method = "nearest_neighbor"
588
        elif mode == b'linear':
589
            method = "bilinear"
590
        else:
591 592
            raise tvm.error.OpAttributeInvalid(
                'Value {} in attribute "mode" of operator Upsample is not valid.'.format(mode))
593
        attr = {'scale':int(scales[-1]), 'method':method, 'layout':'NCHW', 'align_corners':True}
594 595 596 597 598 599 600 601 602
        return AttrCvt('upsampling')(inputs, attr)


class Shape(OnnxOpConverter):
    """ Operator converter for Shape.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
Zhi committed
603
        # TODO(@jroesch): use shape_of once it has been fixed)
604
        return _op.shape_of(inputs[0])
605 606 607 608 609 610 611 612 613 614 615 616 617

class Cast(OnnxOpConverter):
    """ Operator converter for Cast.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr)

    @classmethod
    def _impl_v5(cls, inputs, attr, params):
        try:
            from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
618
            attr['to'] = str(TENSOR_TYPE_TO_NP_TYPE[attr['to']])
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
        except ImportError as e:
            raise ImportError(
                "Unable to import onnx.mapping which is required {}".format(e))
        return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr)


class Unsqueeze(OnnxOpConverter):
    """ Operator converter for Unsqueeze.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        for axes in attr['axes']:
            inputs[0] = _op.expand_dims(inputs[0], axis=axes, num_newaxis=1)
        return inputs[0]


class Split(OnnxOpConverter):
    """ Operator converter for Split.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        attr['indices_or_sections'] = []
        index = 0
        for i in attr['split'][:-1]:
            index += i
            attr['indices_or_sections'].append(index)
        return AttrCvt(
            'split',
            ignores=['split'])(inputs, attr, params)


class Slice(OnnxOpConverter):
    """ Operator converter for Slice.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if isinstance(attr['starts'], int):
            attr['starts'] = (attr['starts'],)
            attr['ends'] = (attr['ends'],)

        try:
            # Update the starts and ends according to axes if required.
            if isinstance(attr['axes'], int):
                attr['axes'] = (attr['axes'],)

            if (max(attr['axes']) + 1) != len(attr['axes']):
                new_axes = []
                new_starts = []
                new_ends = []
                pop_index = 0
                for i in range(max(attr['axes']) + 1):
                    if i in attr['axes']:
                        new_axes.append(i)
                        new_starts.append(attr['starts'][pop_index])
                        new_ends.append(attr['ends'][pop_index])
                        pop_index += 1
                    else:
                        new_axes.append(i)
                        new_starts.append(0)
                        new_ends.append(np.iinfo(np.int32).max)
                attr['axes'] = new_axes
                attr['starts'] = new_starts
                attr['ends'] = new_ends
        except KeyError:
            pass

        return AttrCvt('strided_slice',
                       transforms={'starts': 'begin',
                                   'ends': 'end'},
                       ignores=['axes'])(inputs, attr)

class Gather(OnnxOpConverter):
    """ Operator converter for Gather.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 0)
        return AttrCvt('take',
                       extras={'axis':axis})(inputs, {})
        #return _op.take(inputs[0], inputs[1], axis)

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

class Greater(OnnxOpConverter):
    """ Operator logical greater.
    """
    @classmethod
    def _impl_v7(cls, inputs, attr, params):
        return _op.greater(inputs[0], inputs[1])


class Less(OnnxOpConverter):
    """ Operator logical less than.
    """
    @classmethod
    def _impl_v7(cls, inputs, attr, params):
        return _op.less(inputs[0], inputs[1])


719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
class LRN(OnnxOpConverter):
    """ Operator converter for Local Response Normalization.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        """LRN support only NCHW format
        https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN
        """
        axis = 1
        alpha = attr.get('alpha', 0.0001)
        beta = attr.get('beta', 0.75)
        bias = attr.get('bias', 1.0)
        nsize = attr.get('size')
        attr = {'size':nsize, 'axis':axis, 'alpha':alpha, 'beta':beta, 'bias':bias}
        return AttrCvt('lrn')(inputs, attr)

class Maximum(OnnxOpConverter):
    """ Operator converter for Maximum.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if not isinstance(inputs, list) or len(inputs) < 2:
            raise ValueError("Expect minimum 2 inputs")
        _max = inputs[0]
        for i in range(1, len(inputs)):
            _max = AttrCvt('maximum')([_max, inputs[i]], {})
        return _max

class Minimum(OnnxOpConverter):
    """ Operator converter for Minimum.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if not isinstance(inputs, list) or len(inputs) < 2:
            raise ValueError("Expect minimum 2 inputs")
        _min = inputs[0]
        for i in range(1, len(inputs)):
            _min = AttrCvt('minimum')([_min, inputs[i]], {})
        return _min

class Mean(OnnxOpConverter):
    """ Operator converter for Mean.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if not isinstance(inputs, list) or len(inputs) < 2:
            raise ValueError("Expect minimum 2 inputs")
        # avoid overflow
        concat = _op.concatenate([_op.expand_dims(x, axis=0) for x in inputs], axis=0)
        return _op.mean(concat, axis=0, keepdims=False)

class HardSigmoid(OnnxOpConverter):
    """ Operator converter for HardSigmoid.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = attr.get('alpha', 0.2)
        beta = attr.get('beta', 0.5)
        transformX = (inputs[0] * _expr.const(alpha)) + _expr.const(beta)
        attr = {'a_min':0, 'a_max':1}
        return AttrCvt('clip')([transformX], attr)

class Reduce(OnnxOpConverter):
    """ Operator converter for reduce ops.
    """
    name = ''
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if 'axes' in attr:
            axis = attr.get('axes', 0)
        else:
            axis_len = len(infer_shape(inputs[0]))
            axis = list(range(axis_len))
        attr = {'axis':axis, 'keepdims':attr.get('keepdims', True)}
        return AttrCvt(cls.name)(inputs, attr)

class ReduceMax(Reduce):
796
    """ Operator converter for ReduceMax.
797 798 799 800
    """
    name = 'max'

class ReduceMin(Reduce):
801
    """ Operator converter for ReduceMin.
802 803 804 805
    """
    name = 'min'

class ReduceSum(Reduce):
806
    """ Operator converter for ReduceSum.
807 808 809 810
    """
    name = 'sum'

class ReduceMean(Reduce):
811
    """ Operator converter for ReduceMean.
812 813 814
    """
    name = 'mean'

815
class ReduceProd(Reduce):
816
    """ Operator converter for ReduceProd.
817 818 819
    """
    name = 'prod'

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
class ArgMax(OnnxOpConverter):
    """ Operator converter for ArgMax.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 0)
        keepdims = attr.get('keepdims', True)
        attr = {'axis':axis, 'keepdims':keepdims}
        return AttrCvt('argmax')(inputs, attr)

class ArgMin(OnnxOpConverter):
    """ Operator converter for ArgMin.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 0)
        keepdims = attr.get('keepdims', True)
        attr = {'axis':axis, 'keepdims':keepdims}
        return AttrCvt('argmin')(inputs, attr)

class Softmax(OnnxOpConverter):
    """ Operator converter for Softmax.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # set default value when axis is not set in the model
        if 'axis' not in attr:
            attr['axis'] = 1
        return AttrCvt('softmax', transforms={'axis': ('axis', 1)})(inputs, attr, params)

class ConstantFill(OnnxOpConverter):
    """ Operator converter for ConstantFill.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        num_inputs = len(inputs)
        if 'shape' in attr:
            if num_inputs > 1:
                raise ImportError(
                    "Can't set shape and input tensor at a time")
            shape = attr.pop('shape')
        else:
            if num_inputs == 1:
                raise ImportError(
                    "Either shape attribute or input should be set")
            if 'input_as_shape' in attr and attr['input_as_shape']:
                shape = params[get_name(inputs[0])].asnumpy()
            else:
                if 'extra_shape' in attr:
869 870 871
                    raise tvm.error.OpAttributeInvalid('Attribute "extra_shape" not '
                                                       'supported with "fill_like" for '
                                                       'operator ConstantFill.')
872 873 874 875 876 877
                return _op.full_like(inputs[0], inputs[1])

        if 'extra_shape' in attr:
            shape = shape + attr.pop('extra_shape')
        return _op.full(inputs[0], shape)

878 879 880 881 882 883 884 885 886 887 888 889
class Sign(OnnxOpConverter):
    """ Operator converter for Sign.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.sign(inputs[0])

class Equal(Elemwise):
    """ Operator converter for Equal.
    """
    name = 'equal'

890 891 892 893 894 895 896 897 898

class Not(Elemwise):
    """ Operator converter for Not.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.logical_not(inputs[0])


899 900 901 902 903 904 905 906
class And(Elemwise):
    """ Operator converter for And.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.logical_and(inputs[0], inputs[1])


907 908 909 910 911 912 913 914 915 916 917
class Tile(Elemwise):
    """Operator converter for Tile
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if 'repeats' not in attr:
            raise tvm.error.OpAttributeInvalid('Attribute "repeats" should be set '
                                               'for operator Tile.')
        reps = attr.pop('repeats')  # The number of times repeating the tensor data.
        return _op.tile(inputs[0], reps)

918 919 920 921 922 923 924
class Erf(OnnxOpConverter):
    """Operator converter for Erf
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.erf(inputs[0])

925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
# compatible operators that do NOT require any conversion.
_identity_list = []


# _convert_map defines maps of name to converter functor(callable)
# for 1 to 1 mapping, use Renamer if nothing but name is different
# use AttrCvt if attributes need to be converted
# for 1 to N mapping(composed), use custom callable functions
# for N to 1 mapping, currently not supported(?)
def _get_convert_map(opset):
    return {
        # defs/experimental
        'Identity': Renamer('copy'),
        # 'Affine'
        'ThresholdedRelu': ThresholdedRelu.get_converter(opset),
        'ScaledTanh': ScaledTanh.get_converter(opset),
        'ParametricSoftplus': ParametricSoftPlus.get_converter(opset),
        'ConstantFill': ConstantFill.get_converter(opset),
        # 'GivenTensorFill'
        'FC': AttrCvt('dense', ignores=['axis', 'axis_w']),
        'Scale': Scale.get_converter(opset),
        # 'GRUUnit'
        # 'ATen'
        # 'ImageScaler'
        # 'MeanVarianceNormalization'
        # 'Crop'
        # 'Embedding'
        'Upsample' : Upsample.get_converter(opset),
        'SpatialBN': BatchNorm.get_converter(opset),

        # defs/generator
        # 'Constant' # Implemented
        # 'RandomUniform'
        # 'RandomNormal'
        # 'RandomUniformLike'
        # 'RandomNormalLike'

        # defs/logical

        # defs/math
        'Add': Add.get_converter(opset),
        'Sub': Sub.get_converter(opset),
        'Mul': Mul.get_converter(opset),
        'Div': Div.get_converter(opset),
        'Neg': Renamer('negative'),
        'Abs': Absolute.get_converter(opset),
        'Reciprocal': Reciprocal.get_converter(opset),
        'Floor': Renamer('floor'),
        'Ceil': Renamer('ceil'),
        'Sqrt': Renamer('sqrt'),
        'Relu': Renamer('relu'),
        'LeakyRelu': Renamer('leaky_relu'),
        'Selu': Selu.get_converter(opset),
        'Elu': Elu.get_converter(opset),
        'Exp': Renamer('exp'),
981 982
        'Greater': Greater.get_converter(opset),
        'Less': Less.get_converter(opset),
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        'Log': Renamer('log'),
        'Tanh': Renamer('tanh'),
        'Pow': Renamer('power'),
        'PRelu': Prelu.get_converter(opset),
        'Sigmoid': Renamer('sigmoid'),
        'HardSigmoid': HardSigmoid.get_converter(opset),
        'Max': Maximum.get_converter(opset),
        'Min': Minimum.get_converter(opset),
        'Sum': Sum.get_converter(opset),
        'Mean': Mean.get_converter(opset),
        'Clip': AttrCvt('clip', transforms={'min': 'a_min', 'max': 'a_max'}),
        # softmax default axis is different in onnx
        'Softmax': Softmax.get_converter(opset),
        'LogSoftmax': AttrCvt('log_softmax', {'axis': ('axis', 1)}),
        # 'Hardmax'
        'Softsign': Softsign.get_converter(opset),
        'SoftPlus': SoftPlus.get_converter(opset),
        'Gemm': Gemm.get_converter(opset),
        'MatMul': MatMul.get_converter(opset),

        # defs/nn
        'AveragePool': AveragePool.get_converter(opset),
        'MaxPool': MaxPool.get_converter(opset),
        'Conv': Conv.get_converter(opset),
        'ConvTranspose': ConvTranspose.get_converter(opset),
        'GlobalAveragePool': Renamer('global_avg_pool2d'),
        'GlobalMaxPool': Renamer('global_max_pool2d'),
        'BatchNormalization': BatchNorm.get_converter(opset),
1011
        'InstanceNormalization': InstanceNorm.get_converter(opset),
1012 1013
        # 'LpNormalization'
        'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']),
1014
        'Flatten': Flatten.get_converter(opset),
1015 1016 1017 1018 1019 1020 1021
        'LRN': LRN.get_converter(opset),

        # defs/reduction
        'ReduceMax': ReduceMax.get_converter(opset),
        'ReduceMin': ReduceMin.get_converter(opset),
        'ReduceSum': ReduceSum.get_converter(opset),
        'ReduceMean': ReduceMean.get_converter(opset),
1022
        'ReduceProd': ReduceProd.get_converter(opset),
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        # 'ReduceProd'
        # 'ReduceLogSumExp'
        'ArgMax': ArgMax.get_converter(opset),
        'ArgMin': ArgMin.get_converter(opset),

        # defs/tensor
        'Cast': Cast.get_converter(opset),
        'Reshape': Reshape.get_converter(opset),
        'Concat': Concat.get_converter(opset),
        'Split': Split.get_converter(opset),
        'Slice': Slice.get_converter(opset),
        'Transpose': AttrCvt('transpose', {'perm': 'axes'}),
        'Gather': Gather.get_converter(opset),
        'Squeeze': AttrCvt('squeeze', {'axes': 'axis'}),
        'Unsqueeze': Unsqueeze.get_converter(opset),
        'Pad': Pad.get_converter(opset),
1039
        'Shape': Shape.get_converter(opset),
1040
        'Sign': Sign.get_converter(opset),
1041
        'Equal': Equal.get_converter(opset),
1042
        'Not': Not.get_converter(opset),
1043
        'And': And.get_converter(opset),
1044 1045
        'Tile': Tile.get_converter(opset),
        'Erf': Erf.get_converter(opset)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    }


class GraphProto(object):
    """A helper class for handling Relay expression copying from pb2.GraphProto.
    Definition: https://github.com/onnx/onnx/blob/master/onnx/onnx.proto

        Parameters
    ----------
    shape : dict of str to tuple, optional
        The input shape to the graph

    dtype : str or dict of str to str
        The input types to the graph
    """

    def __init__(self, shape, dtype):
        self._nodes = {}
        self._params = {}
        self._renames = {}
        self._num_input = 0
        self._num_param = 0
1068
        self._shape = shape if shape else {}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        self._dtype = dtype

    def from_onnx(self, graph, opset):
        """Construct Relay expression from ONNX graph.

        Onnx graph is a python protobuf object.
        The companion parameters will be handled automatically.
        However, the input names from onnx graph is vague, mixing inputs and
        network weights/bias such as "1", "2"...
        For convenience, we rename the `real` input names to "input_0",
        "input_1"... And renaming parameters to "param_0", "param_1"...

        Parameters
        ----------
        graph : onnx protobuf object
            The loaded onnx graph
1085

1086 1087 1088 1089
        opset : opset version

        Returns
        -------
1090 1091 1092
        mod : tvm.relay.Module
            The returned relay module

1093 1094 1095 1096 1097 1098 1099 1100
        params : dict
            A dict of name: tvm.nd.array pairs, used as pretrained weights
        """
        # parse network inputs to relay, aka parameters
        for init_tensor in graph.initializer:
            if not init_tensor.name.strip():
                raise ValueError("Tensor's name is required.")
            self._params[init_tensor.name] = self._parse_array(init_tensor)
1101 1102 1103
            self._nodes[init_tensor.name] = new_var(init_tensor.name,
                                                    shape=self._params[init_tensor.name].shape,
                                                    dtype=self._params[init_tensor.name].dtype)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        for i in graph.input:
            # from onnx v0.2, GraphProto.input has type ValueInfoProto,
            #  and the name is 'i.name'
            i_name = self._parse_value_proto(i)
            d_type = self._parse_dtype(i, 'float32')
            if i_name in self._params:
                # i is a param instead of input
                self._num_param += 1
                self._params[i_name] = self._params.pop(i_name)
                self._nodes[i_name] = new_var(i_name,
                                              shape=self._params[i_name].shape,
                                              dtype=self._params[i_name].dtype)
            else:
                self._num_input += 1
1118 1119 1120 1121
                if i_name in self._shape:
                    tshape = self._shape[i_name]
                else:
                    raise ValueError("Must provide an input shape for `{0}`.".format(i_name))
1122 1123 1124 1125
                if isinstance(self._dtype, dict):
                    dtype = self._dtype[i_name] if i_name in self._dtype else d_type
                else:
                    dtype = d_type
1126
                self._nodes[i_name] = new_var(i_name, shape=tshape, dtype=dtype)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        # get list of unsupported ops
        convert_map = _get_convert_map(opset)
        unsupported_ops = set()
        for node in graph.node:
            op_name = node.op_type
            if op_name not in convert_map and \
               op_name != 'Constant' and \
               op_name not in _identity_list:
                unsupported_ops.add(op_name)
        if unsupported_ops:
            msg = 'The following operators are not supported for frontend ONNX: '
            msg += ', '.join(unsupported_ops)
            raise tvm.error.OpNotImplemented(msg)
1140 1141 1142 1143 1144 1145 1146 1147
        # construct nodes, nodes are stored as directed acyclic graph
        for node in graph.node:
            op_name = node.op_type
            attr = self._parse_attr(node.attribute)
            inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]
            if op_name == "Constant":
                t_proto = self._parse_attr(node.attribute)["value"]
                self._num_param += 1
Zhi committed
1148 1149 1150 1151 1152 1153 1154 1155 1156
                # We should convert scalar integers to int32, to normalize.
                array = self._parse_array(t_proto)
                if len(array.shape) == 0 and array.dtype == 'int64':
                    array = _nd.array(array.asnumpy().astype('int32'))
                self._params[node.output[0]] = array
                self._nodes[node.output[0]] = new_var(
                    node.output[0],
                    shape=list(t_proto.dims),
                    dtype=array.dtype)
1157 1158 1159 1160 1161 1162 1163 1164 1165
            else:
                if op_name == "ConstantFill":
                    fill_value = attr.get('value', 0.0)
                    dtype = attr.get('dtype', b'int32').decode("utf-8")
                    i_name = node.output[0]
                    self._params[i_name] = fill_value
                    self._nodes[i_name] = new_var(node.output[0], shape=(), dtype=dtype)
                    inputs.append(self._nodes[i_name])

1166 1167 1168 1169
                i_name = self._parse_value_proto(node)
                attr['tvm_custom'] = {}
                attr['tvm_custom']['name'] = i_name

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
                op = self._convert_operator(op_name, inputs, attr, opset)
                node_output = self._fix_outputs(op_name, node.output)
                if not isinstance(op, _expr.TupleWrapper):
                    outputs_num = 1
                else:
                    outputs_num = len(op)
                assert len(node_output) == outputs_num, (
                    "Number of output mismatch {} vs {} in {}.".format(
                        len(node_output), outputs_num, op_name))
                if outputs_num == 1:
                    self._nodes[node_output[0]] = op
                else:
                    for k, i in zip(list(node_output), range(len(node_output))):
                        self._nodes[k] = op[i]

        # now return the outputs
        outputs = [self._nodes[self._parse_value_proto(i)] for i in graph.output]
        outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs)
Zhi committed
1188
        func = _expr.Function(analysis.free_vars(outputs), outputs)
1189
        return _module.Module.from_expr(func), self._params
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

    def _parse_value_proto(self, value_proto):
        """Parse ValueProto or raw str."""
        try:
            name = value_proto.name
        except AttributeError:
            name = value_proto
        return name

    def _parse_dtype(self, value_proto, dtype):
        """Parse dtype."""
        try:
            from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
            return TENSOR_TYPE_TO_NP_TYPE[value_proto.type.tensor_type.elem_type].name
        except AttributeError:
            return dtype

    def _parse_array(self, tensor_proto):
        """Grab data in TensorProto and convert to numpy array."""
        try:
            from onnx.numpy_helper import to_array
        except ImportError as e:
            raise ImportError(
                "Unable to import onnx which is required {}".format(e))
        np_array = to_array(tensor_proto).reshape(tuple(tensor_proto.dims))
        return _nd.array(np_array)

    def _parse_attr(self, attr_proto):
        """Convert a list of AttributeProto to a dict, with names as keys."""
        attrs = {}
        for a in attr_proto:
            for f in ['f', 'i', 's']:
                if a.HasField(f):
                    attrs[a.name] = getattr(a, f)
            for f in ['floats', 'ints', 'strings']:
                if list(getattr(a, f)):
                    assert a.name not in attrs, "Only one type of attr is allowed"
                    attrs[a.name] = tuple(getattr(a, f))
            for f in ['t']:
                if a.HasField(f):
                    attrs[a.name] = getattr(a, f)
            for f in ['tensors']:
                if list(getattr(a, f)):
                    assert a.name not in attrs, "Only one type of attr is allowed"
                    attrs[a.name] = tuple(getattr(a, f))
            for f in ['g']:
                if a.HasField(f):
                    raise NotImplementedError(
                        "Filed {} is not supported in relay.".format(f))
            for f in ['graphs']:
                if list(getattr(a, f)):
                    raise NotImplementedError(
                        "Filed {} is not supported in relay.".format(f))
            if a.name not in attrs:
                raise ValueError("Cannot parse attribute: \n{}\n.".format(a))
        return attrs

    def _convert_operator(self,
                          op_name,
                          inputs,
                          attrs,
                          opset):
        """Convert ONNX operator into a Relay operator.
1253
        The converter must specify conversions explicitly for incompatible name, and
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        apply handlers to operator attributes.

        Parameters
        ----------
        op_name : str
            Operator name, such as Convolution, FullyConnected
        inputs : list of tvm.relay.expr.Function
            List of inputs.
        attrs : dict
            Dict of operator attributes
        opset : int
            Opset version

        Returns
        -------
        sym : tvm.relay.expr.Function
            Converted relay function
        """
        convert_map = _get_convert_map(opset)
        if op_name in _identity_list:
            sym = get_relay_op(op_name)(*inputs, **attrs)
        elif op_name in convert_map:
            sym = convert_map[op_name](inputs, attrs, self._params)
        else:
            raise NotImplementedError(
                "Operator {} not implemented.".format(op_name))
        return sym

    def _fix_outputs(self, op_name, outputs):
        """A hack to handle dropout or similar operator that have more than one out
        in ONNX.
        """
        if op_name == 'Dropout':
            if len(outputs) == 1:
                return outputs
            # TODO(zhreshold): support dropout mask?
            outputs = outputs[:-1]
        return outputs

def from_onnx(model,
              shape=None,
              dtype="float32"):
    """Convert a ONNX model into an equivalent Relay Function.

    ONNX graphs are represented as Python Protobuf objects.
    The companion parameters will be handled automatically.
    However, the input names from onnx graph is vague, mixing inputs and
    network weights/bias such as "1", "2"...
    For convenience, we rename the `real` input names to "input_0",
    "input_1"... And renaming parameters to "param_0", "param_1"...

    Parameters
    ----------
    model : protobuf object
        ONNX ModelProto after ONNX v1.1.0

    shape : dict of str to tuple, optional
        The input shape to the graph

    dtype : str or dict of str to str
        The input types to the graph

    Returns
    -------
1318 1319
    mod : tvm.relay.Module
        The relay module for compilation
1320 1321 1322 1323

    params : dict of str to tvm.NDArray
        The parameter dict to be used by relay
    """
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    try:
        import onnx
        if hasattr(onnx.checker, 'check_model'):
            # try use onnx's own model checker before converting any model
            try:
                onnx.checker.check_model(model)
            except onnx.onnx_cpp2py_export.checker.ValidationError as e:
                import warnings
                # the checker is a bit violent about errors, so simply print warnings here
                warnings.warn(str(e))
    except ImportError:
        pass
1336 1337 1338 1339 1340 1341
    g = GraphProto(shape, dtype)
    graph = model.graph
    try:
        opset = model.opset_import[0].version if model.opset_import else 1
    except AttributeError:
        opset = 1
1342 1343
    mod, params = g.from_onnx(graph, opset)
    return mod, params